

Statistics of Wave Fields in Complex Enclosures in the Frequency and Time Domains

Students: Grad: Ming-Jer Lee, Binyamin Tadesse, Jen-Hao Yeh, Trystan Koch, Mi Jung Jun, Nuttiya Seekhao, Bisrat Addissie, Myung Park,

Undergrad: Heather Zion, Ram Ovidia

Ex Students: Xing Zheng, Sameer Hemmady, James Hart

Postdocs: Zeynep Dilli, Gabriele Gradoni

Faculty: Steve Anlage, Tom Antonsen, Ed Ott, and John Rodgers

INSTITUTE FOR RESEARCH IN
ELECTRONICS
& APPLIED PHYSICS

12 July, 2011

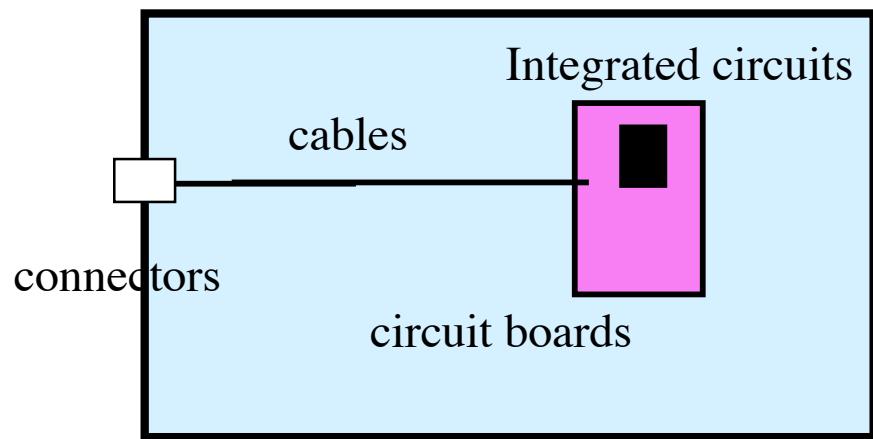
DEPARTMENT OF
PHYSICS
UNIVERSITY OF MARYLAND

DEPARTMENT OF
ELECTRICAL & COMPUTER ENGINEERING
A. JAMES CLARK SCHOOL of ENGINEERING

Supported by AFOSR, ONR

Motivation: Electromagnetic Coupling to Electronic Circuits in Enclosures

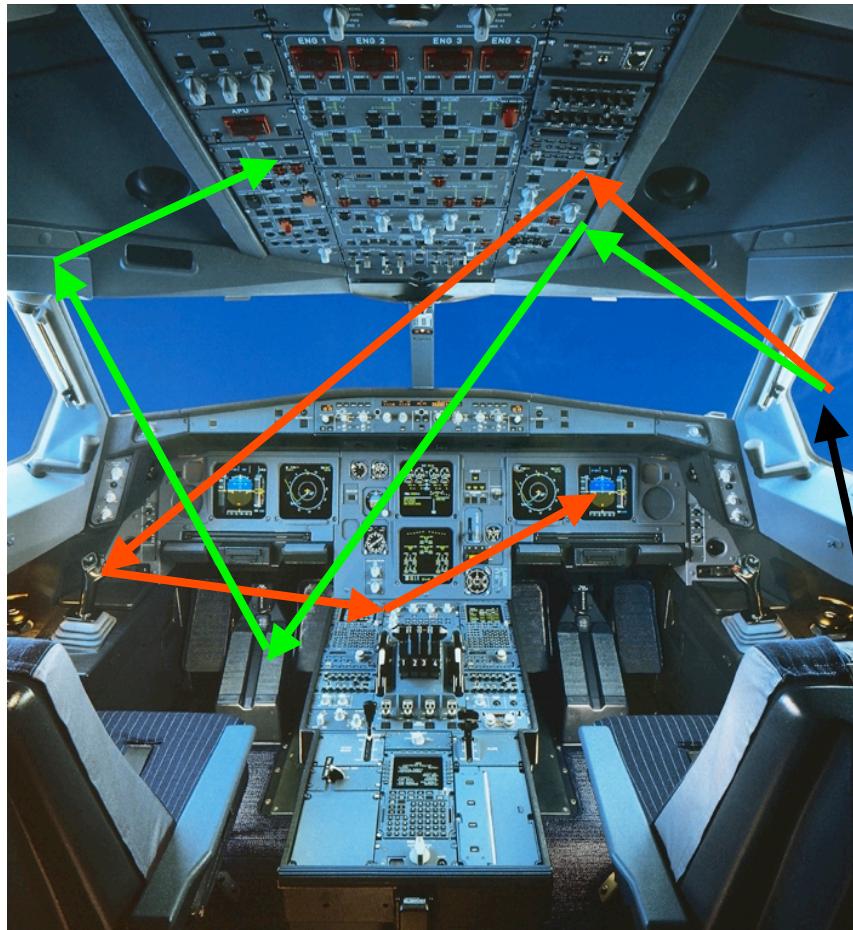
Schematic



- What can be said about coupling without solving in detail the complicated EM problem ?
- Statistical Description !

- Coupling of external radiation to computer circuits is a complex processes:
 - apertures
 - resonant cavities
 - transmission lines
 - circuit elements
- Intermediate frequency range involves many interacting resonances
- System size \gg Wavelength
- **Chaotic Ray Trajectories**
- **“Wave Chaos”**

What is Wave Chaos?



- Wave propagation- linear phenomena (response is linearly proportional to excitation)
- Therefore - not chaotic
- In complex geometries field distribution are highly sensitive to: frequency and/or small perturbations
- Classical rays are chaotic-this affects the field solutions

Two incident rays with slightly different initial directions have rapidly diverging trajectories

Random Matrix Theory and Wave Mechanics

- **Nuclear Spectra**

Motivated by the then impossibility of calculating spectra of large nuclei, Wigner (1950's) conjectured that these spectra have statistical properties that are the same as those of suitable ensembles of random matrices.

- **Quantum Dots & Disordered Systems**

Y. Alhassid, Rev. Mod. Phys. **72**, 895 (2000).

C.W.J. Beenakker, Rev. Mod. Phys. **69**, 731, (1997)

- **Acoustic Resonators**

R.L. Weaver, J. Acoust. Soc. Am. **85**, 1005 (1989)

- **Electromagnetic Compatibility**

L.K. Warne, K.S. H. Lee, H.G. Hudson, W. A. Johnson, R. E. Jorgenson, and S.L. Stronach, IEEE Trans. Ant. Prop. **51**, 978 (2003).

- **Quantum Chaos**

F. Haake, Quantum Signatures of Chaos (Springer-Verlag, Berlin 1991).

H.-J. Stöckmann, Quantum Chaos (Cambridge University Press, Cambridge 1999)

Eigenfrequency Statistics

$$\underline{H} \cdot \underline{\psi}_n = E_n \underline{\psi}_n$$

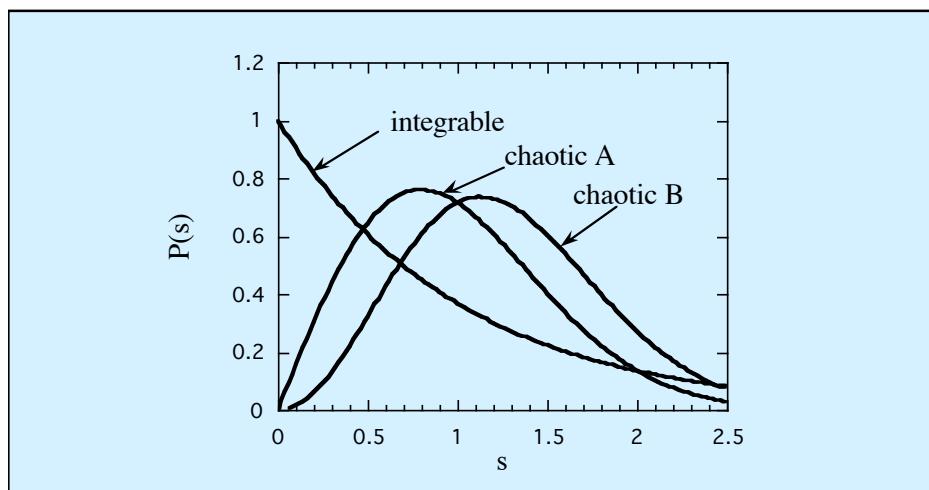
Eigenvalues E_n are distributed particular statistics

Mean Spacing: $\Delta E = \langle E_{n+1} - E_n \rangle$

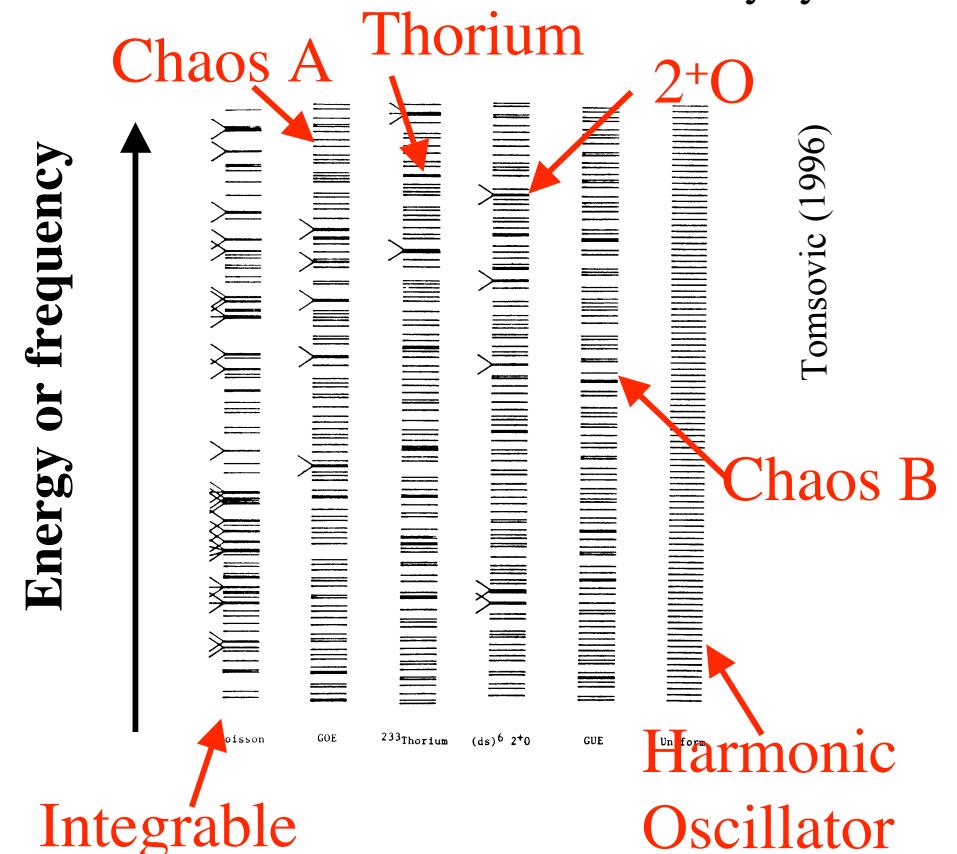
Normalized Spacing:

$$s_n = \langle E_{n+1} - E_n \rangle / \Delta E$$

Distribution



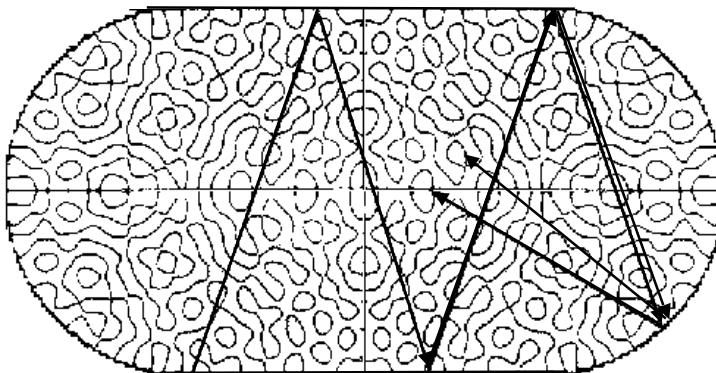
Spacing distributions are characteristic for many systems



Chaos A = Time reversal symmetry
 Chaos B = Time reversal symmetry broken

RMT and Eigenfunction Statistics

Hypothesis: Random matrix theory (RMT) applies to wave problems in the semiclassical regime (short wavelength), if the ray approximation corresponding to the given wave problem yields chaotic wave trajectories [McDonald and Kaufman, PRL (1979); Bohigas, et al., PRL (1984)].



Replace eigenfunction with superposition of random plane waves (Berry Hypothesis)

$$\phi_n = \lim_{N \rightarrow \infty} \operatorname{Re} \left\{ \sqrt{\frac{2}{AN}} \sum_{k=1}^N a_k \exp[i(k_n e_k \cdot x + \theta_k)] \right\}$$

Random amplitude

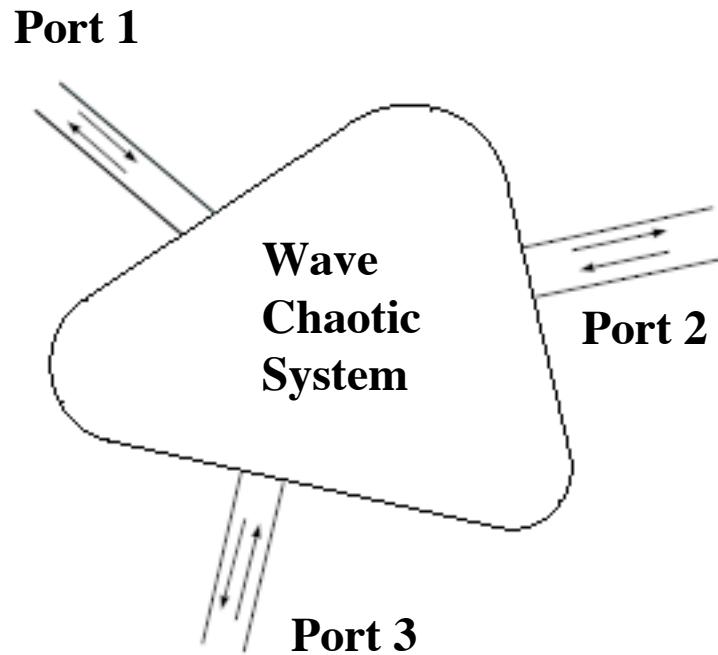
Random direction

Random phase

Note: Hypothesis now assumed to apply even for simple systems.

Our Problem - Scattering

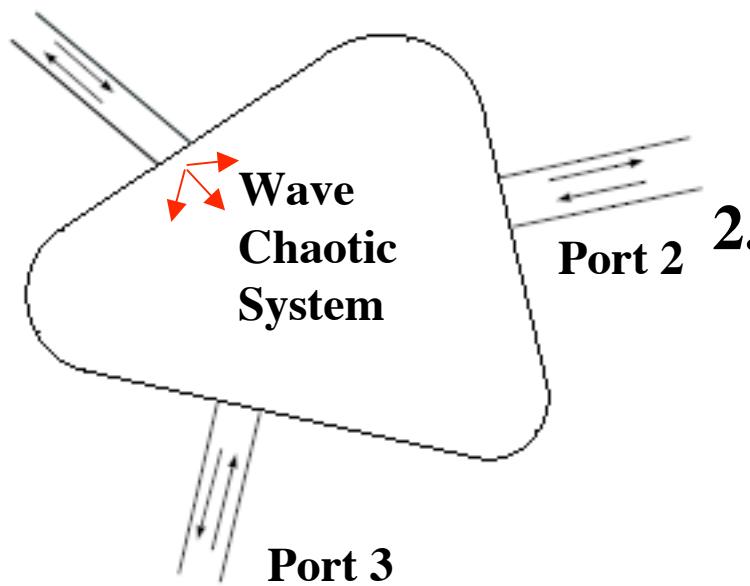
Q: What is the nature of the interaction of the wave chaotic system with the outside world via the connecting ports?



A difficulty: While the waves within the chaotic system are presumably described by random matrix theory in a ‘universal’ (system independent) manner, the answer to Q. also depends on the non-universal aspects of the specific geometry of the coupling between the ports and the chaotic system.

Universal and System Specific Aspects

Port 1



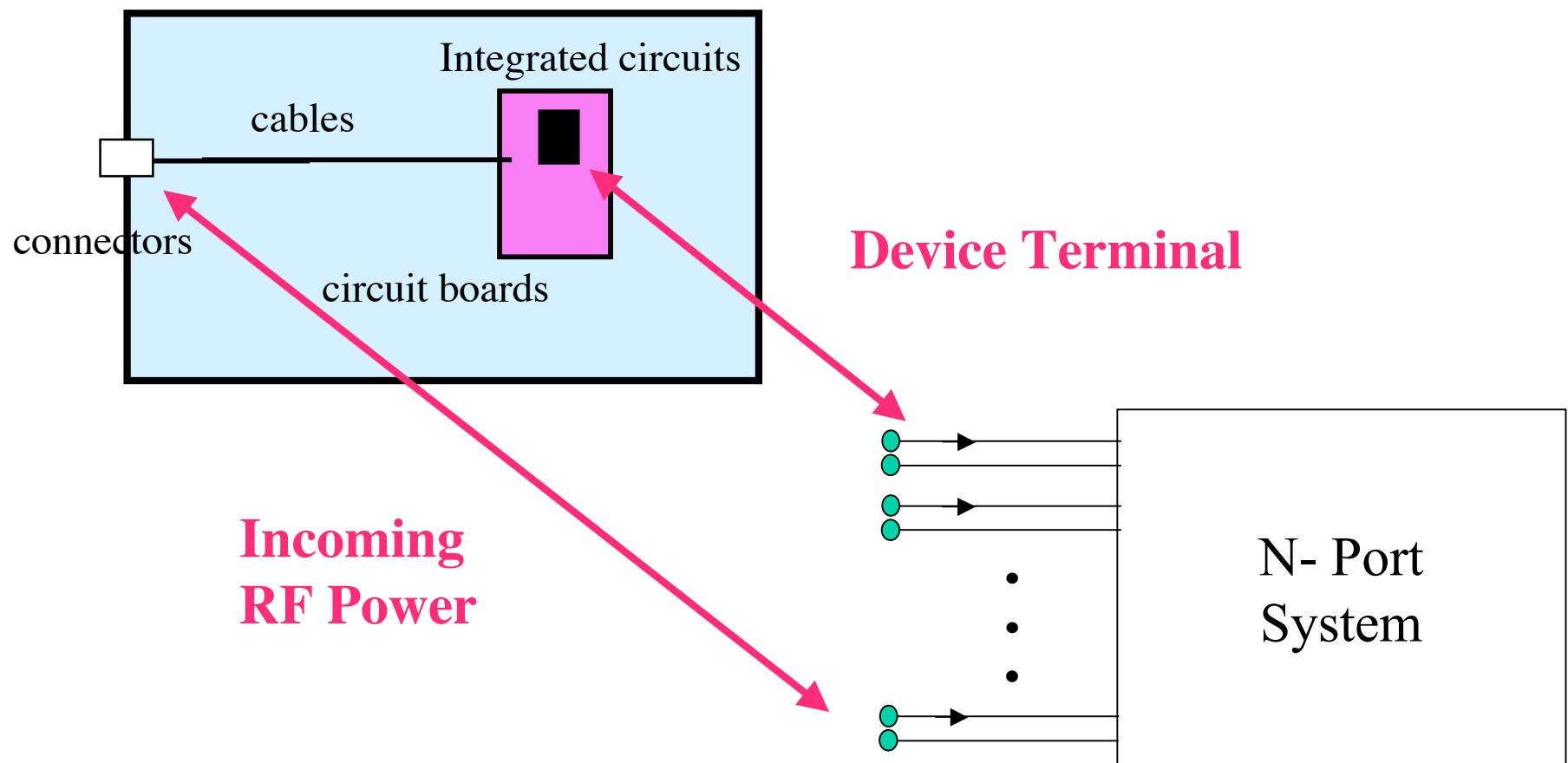
1. **Entry of energy to cavity determined by properties of port.**
 - System specific
 - Applies also to exit

2. **Wave fields inside described by RMT and Berry Hypothesis**
 - Universal statistics
 - Some system specific dependence

Note, interference is still accounted for.

Black Box Representation N - Port System

Schematic

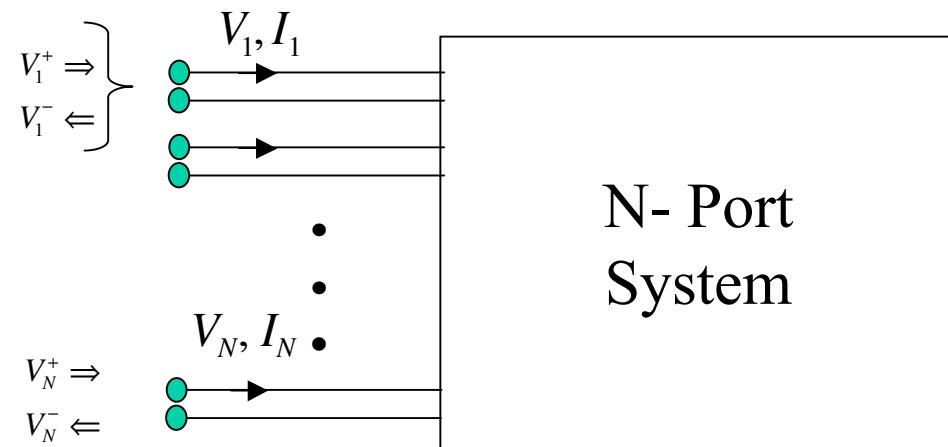


Z and S-Matrices

What is S_{ij} ?

N ports

- voltages and currents,
- incoming and outgoing waves



Z matrix

$$\begin{pmatrix} V_1 \\ V_2 \\ \vdots \\ V_N \end{pmatrix} = Z \begin{pmatrix} I_1 \\ I_2 \\ \vdots \\ I_N \end{pmatrix}$$

voltage

current

S matrix

$$\begin{pmatrix} V_1^- \\ V_2^- \\ \vdots \\ V_{N1}^- \end{pmatrix} = S \begin{pmatrix} V_1^+ \\ V_2^+ \\ \vdots \\ V_{N1}^+ \end{pmatrix}$$

outgoing

incoming

$$S = (Z + Z_0)^{-1} (Z - Z_0)$$

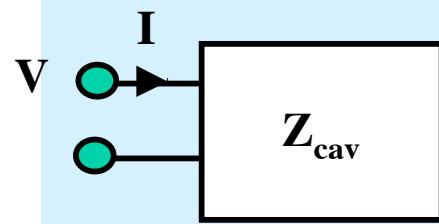
$$Z(\omega), S(\omega)$$

- Complicated function of frequency
- Details depend sensitively on unknown parameters

Frequency Dependence of Reactance for a Single Realization

Lossless:

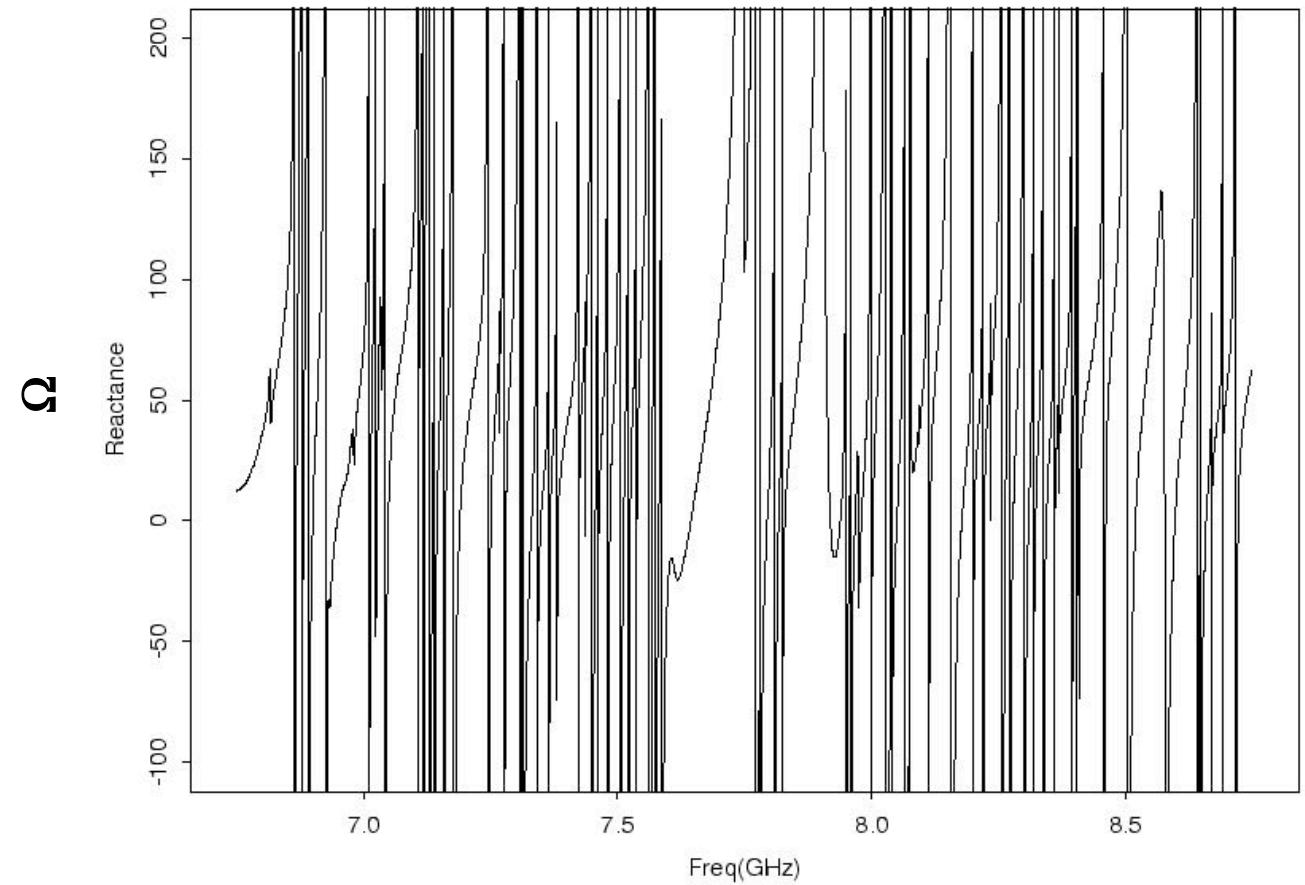
$$\mathbf{V} = \mathbf{Z}_{\text{cav}} \mathbf{I}$$
$$\mathbf{Z}_{\text{cav}} = j\mathbf{X}_{\text{cav}}$$



S - reflection coefficient

$$S = \frac{Z_{\text{cav}} - Z_0}{Z_{\text{cav}} + Z_0} = e^{j\phi}$$

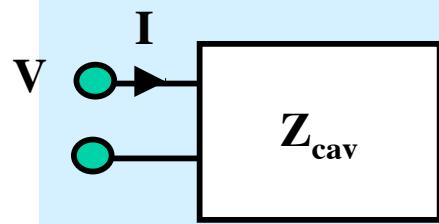
Mean spacing $\delta f \approx .016$ GHz



Frequency Dependence of Reactance for a Single Realization

Lossless:

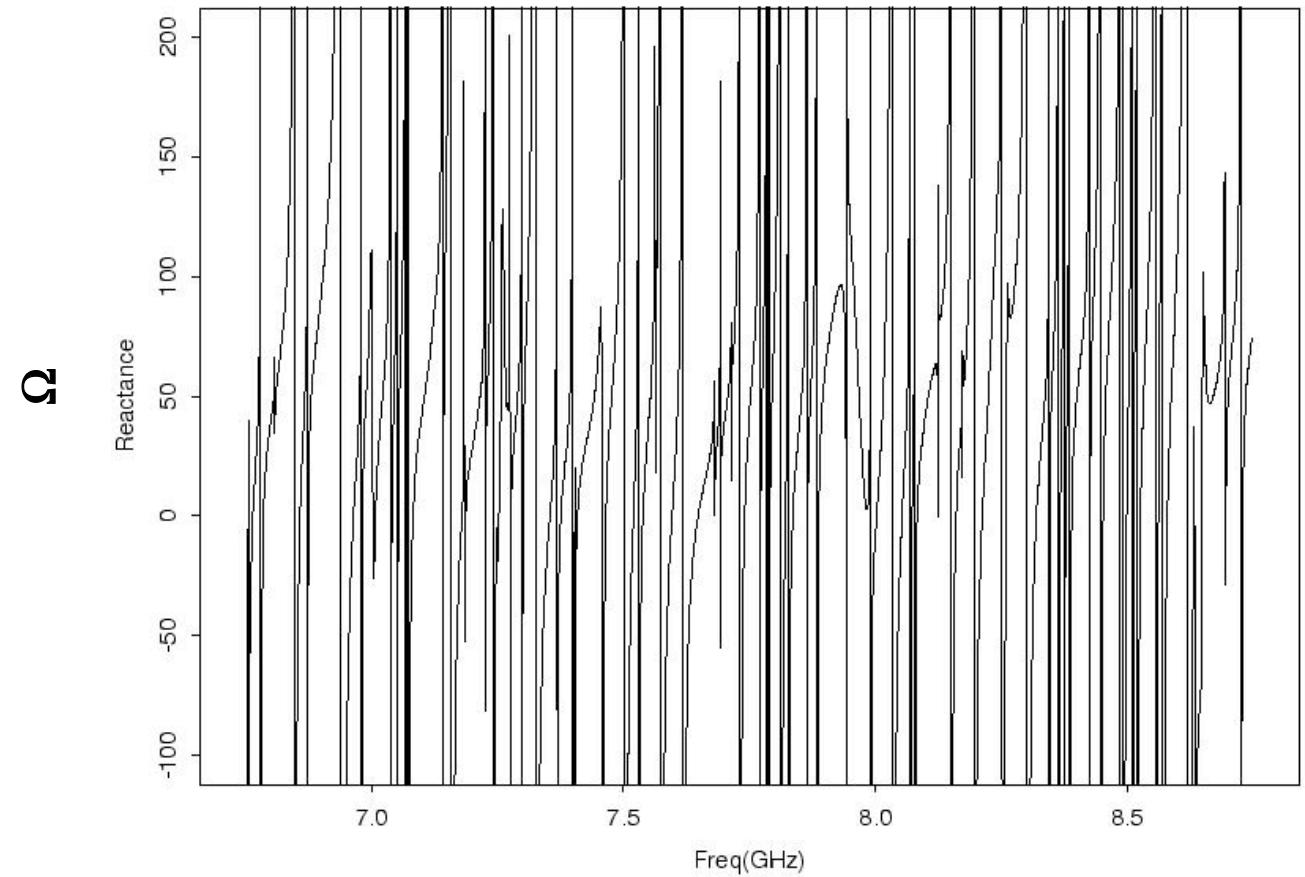
$$V = Z_{\text{cav}} I$$
$$Z_{\text{cav}} = jX_{\text{cav}}$$



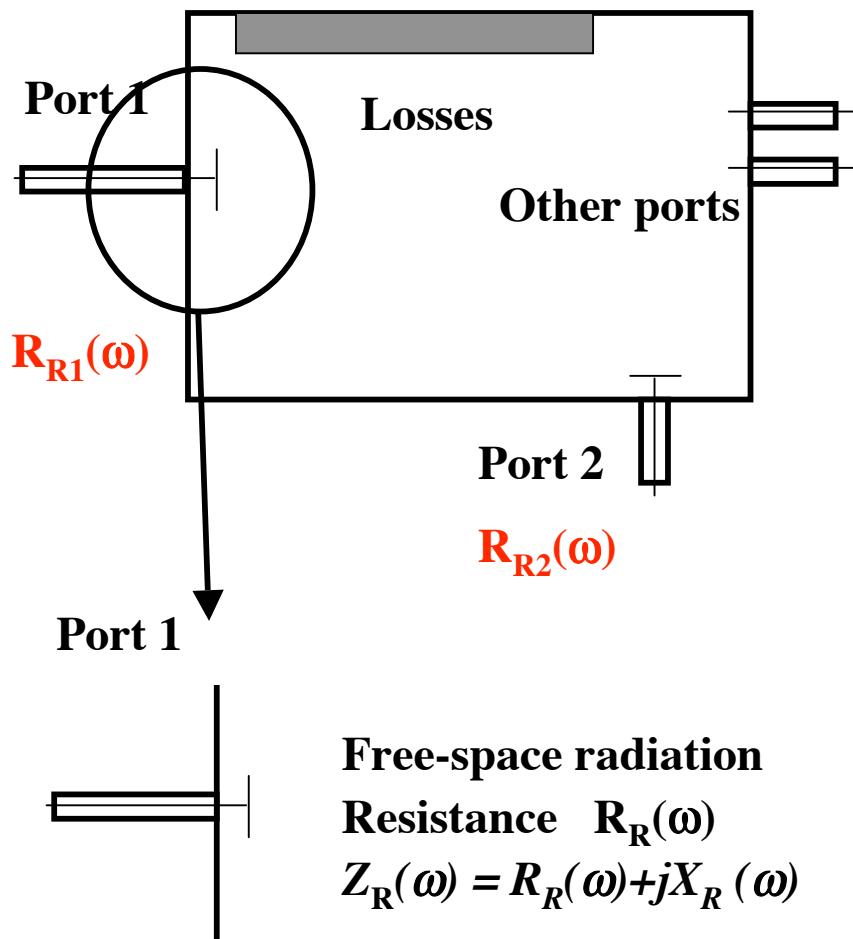
S - reflection coefficient

$$S = \frac{Z_{\text{cav}} - Z_0}{Z_{\text{cav}} + Z_0} = e^{j\phi}$$

Mean spacing $\delta f \approx .016$ GHz



Statistical Model of Z Matrix



Statistical Model Impedance

$$Z_{ij}(\omega) = -\frac{j}{\pi} \sum_n R_{Ri}^{1/2}(\omega_n) R_{Rj}^{1/2}(\omega_n) \frac{\Delta\omega_n^2 w_{in} w_{in}}{\omega^2(1 + jQ^{-1}) - \omega_n^2}$$

System parameters Radiation Resistance $R_{Ri}(\omega)$
 $\Delta\omega_n^2$ - mean spectral spacing
 Q - quality factor

Statistical parameters ω_n - random spectrum
 w_{in} - Gaussian Random variables

Compact Expression for Impedance Matrix

Statistical Model for Cavity Impedance

$$\underline{\underline{Z}}^{cav} = i \operatorname{Im}(\underline{\underline{Z}}^{rad}) + [\underline{\underline{R}}^{rad}]^{1/2} \cdot \xi \cdot [\underline{\underline{R}}^{rad}]^{1/2}$$

Radiation Impedance - Ports

$$\underline{\underline{Z}}^{rad} = i \operatorname{Im}(\underline{\underline{Z}}^{rad}) + \underline{\underline{R}}^{rad}$$

Statistics generated by RMT

$$\xi = \frac{i}{\pi} \sum_n \frac{\Delta k^2 \underline{w}_n \tilde{\underline{w}}_n}{[k_0^2(1 + i/Q) - k_n^2]}$$

GRVs

Eigenvalues of a RM

Lorentzian Random Matrix ($\alpha = k_0^2 / (Q \Delta k^2)$)

Two Approaches

- $Z(\omega)$ construction - Microscopic approach
Uses pieces of problem: R_R , $\Delta\omega^2$, Q to construct Z and S .
- Poisson Kernel - Global Approach to S
(P. A. Mello, P. Pereyra, and A. Frankel, Ann of Phys. 161, 251 (1985))
Statistics of S - Matrix determined by its average $E\{S\}$
 - $P(S|E\{S\})$ includes details of coupling
- Equivalence: Brouwer, Phys. Rev B51, 16878 (1995)

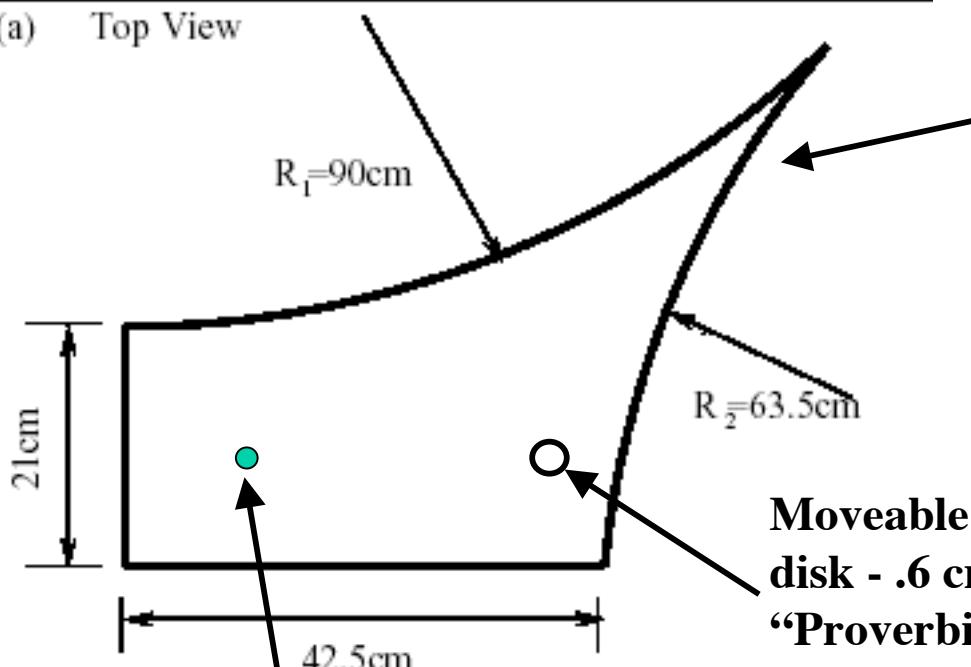
Some Relevant References

- P. A. Mello et al., Ann. Phys. **161**, 254 (1985).
- P. W. Brouwer, Phys. Rev. B **51** (1995).
- E. Kogan et al., Phys. Rev. E **61** (2000).
- R. A. Mendez-Sanchez et al., Phys. Rev. Lett. **91**, (2003).
- L. K. Warne et al., IEEE Trans. Antennas & Prop. **51**, 978 (2003).

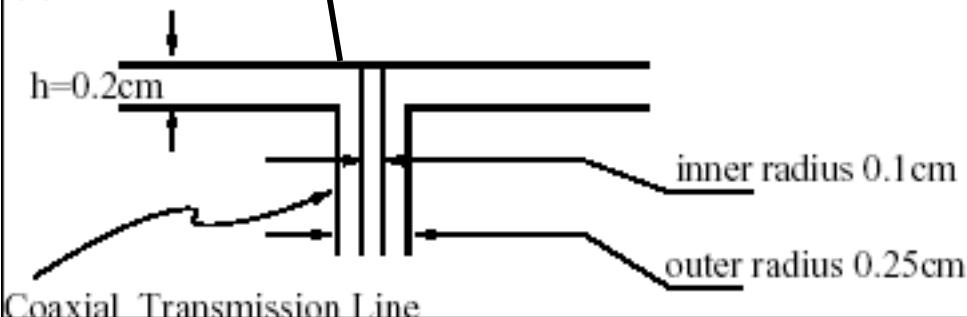
HFSS - Solutions

Bow-Tie Cavity

(a) Top View



(b) Side View



Expect: $Z = j(X_R + R_R \xi)$

ξ - unit Lorentzian

Krieger, Ann. Phys. **42**, 375 (1967)

Mello, "Mesoscopic Quantum Physics" 1995

Fyodorov and Sommers, J. Math Phys. **38**, 1918 (1997)

**Moveable conducting
disk - .6 cm diameter
"Proverbial soda can"**

**Cavity impedance
calculated for
100 locations of disk
4000 frequencies
6.75 GHz to 8.75 GHz**

Frequency Dependence of Reactance for a Single Realization

Ω
 $Z_{\text{cav}} = jX_{\text{cav}}$

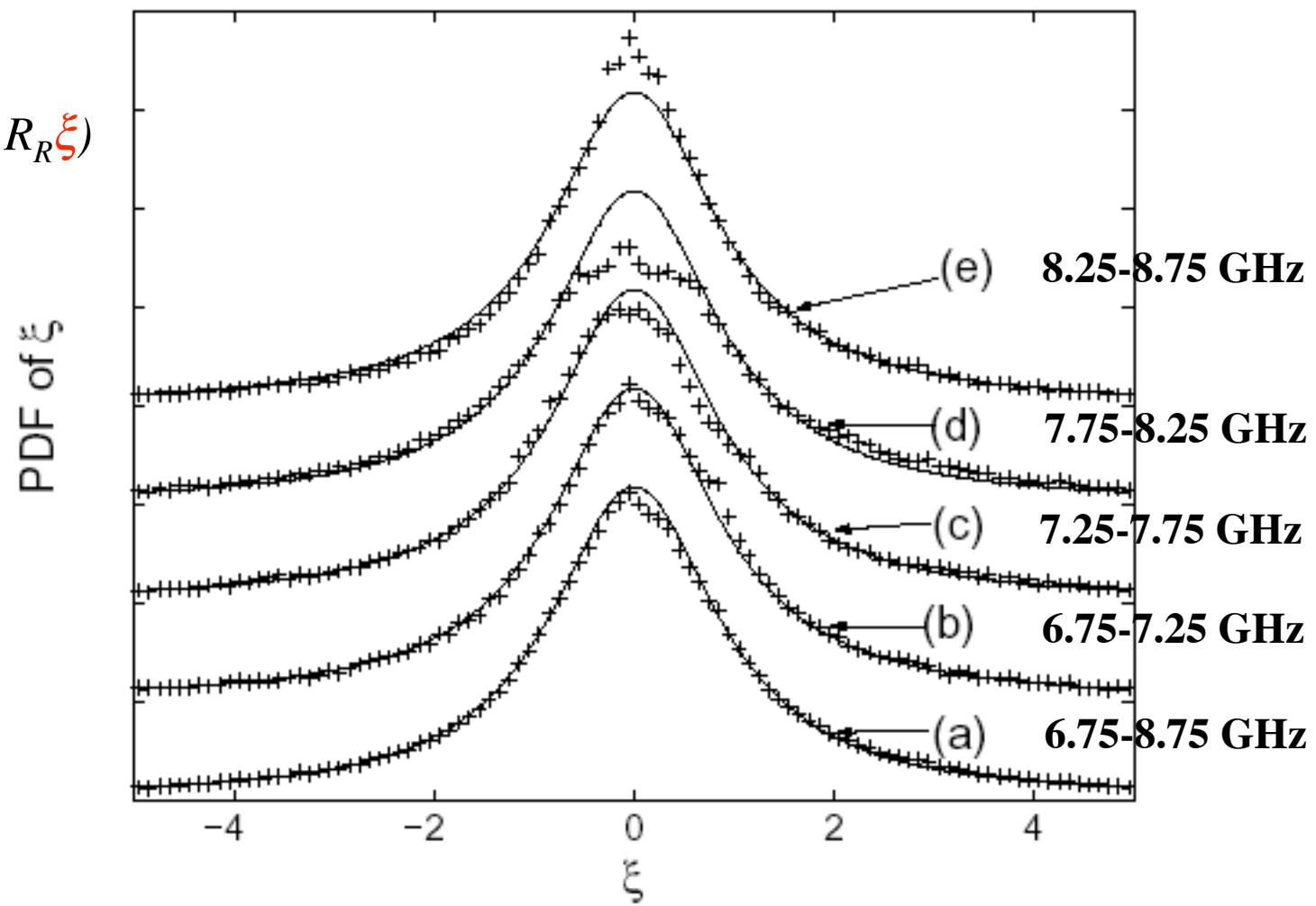


Distribution of Fluctuating Cavity Impedance

$$\xi = (X - X_R(\omega)) / R_R(\omega)$$

$$Z = j(X_R + R_R \xi)$$

$$R_R \approx 35 \Omega$$

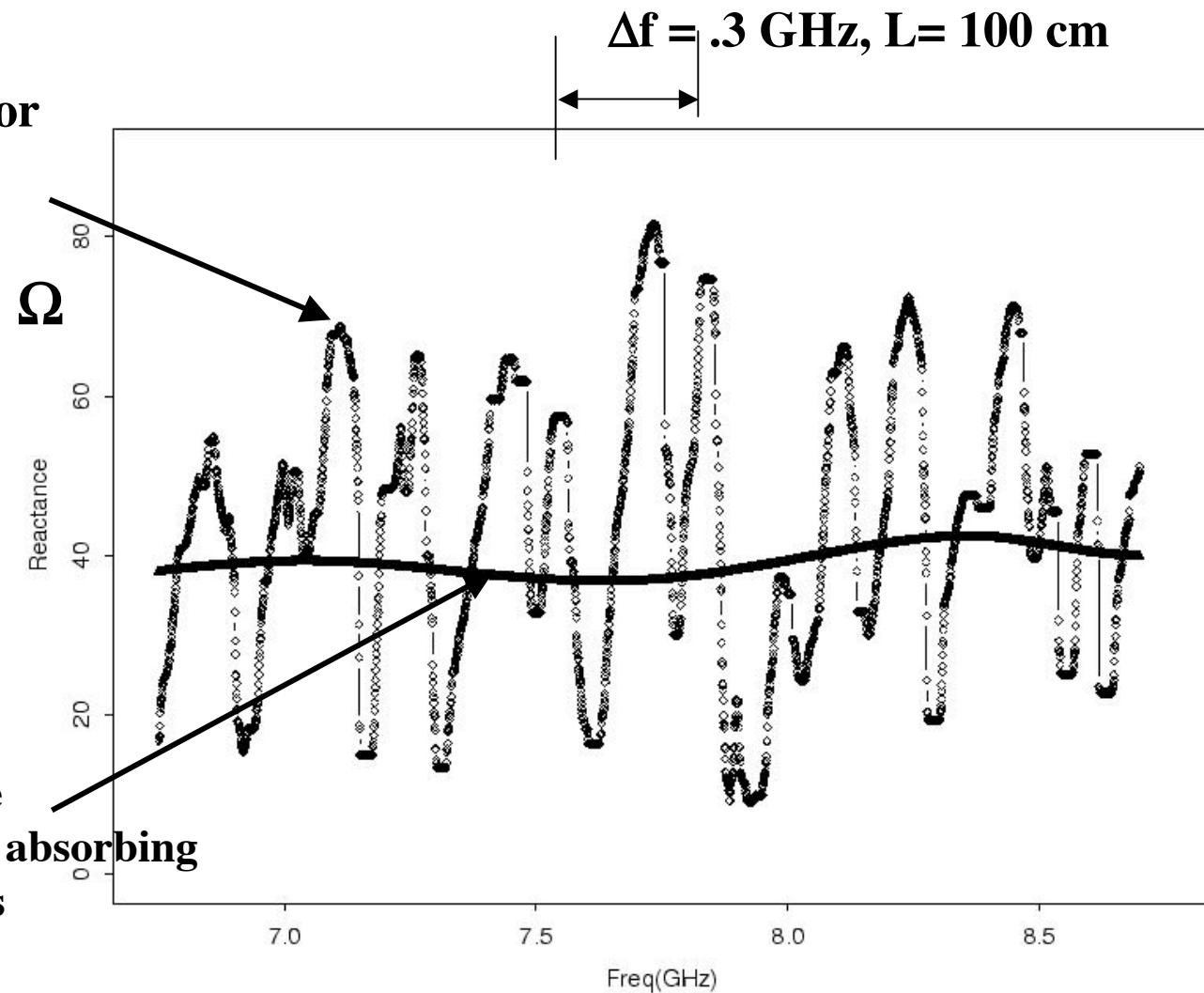


Frequency Dependence of Median Cavity Reactance

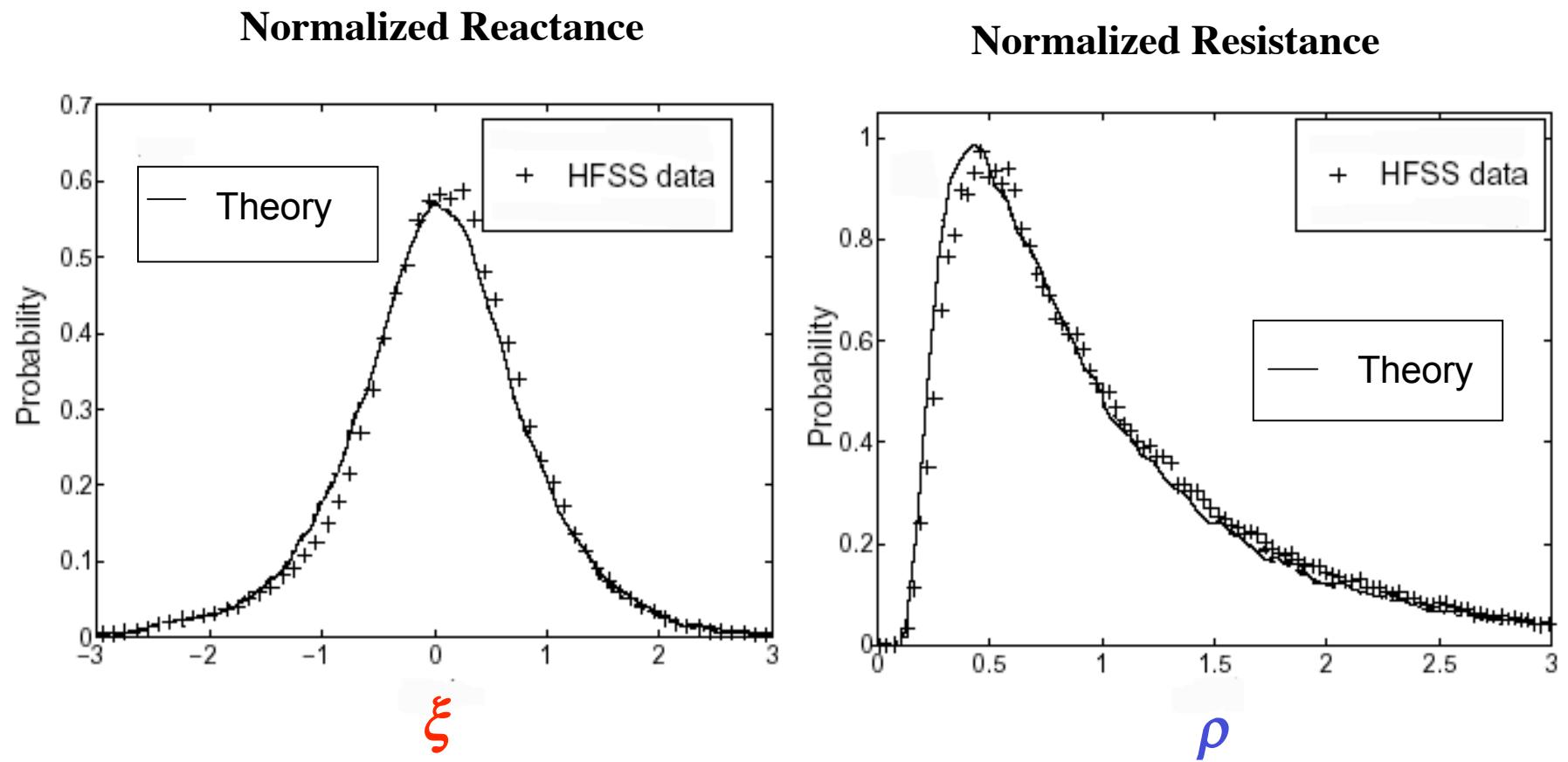
Median Impedance for
100 locations of disc

Effect of strong
Reflections ?

Radiation Reactance
HFSS with perfectly absorbing
Boundary conditions



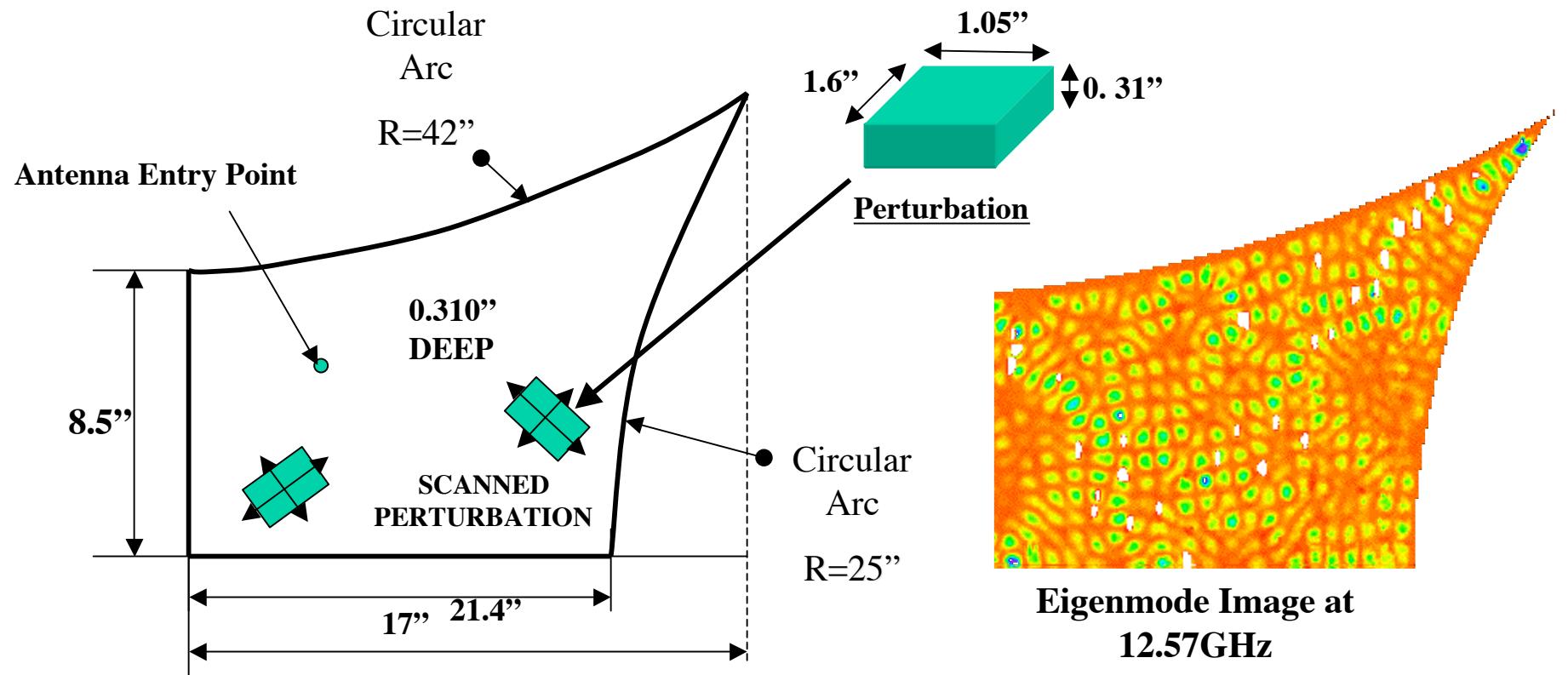
Comparison of HFSS Results and Model for Pdf's of Normalized Impedance



$$Z_{cav} = jX_R + (\rho + j\xi) R_R$$

EXPERIMENTAL Test

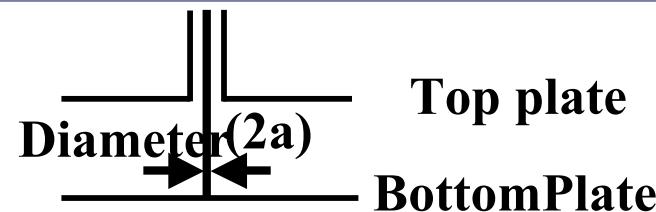
S. Hemmady et al., PRL 94, 014102 (2005)



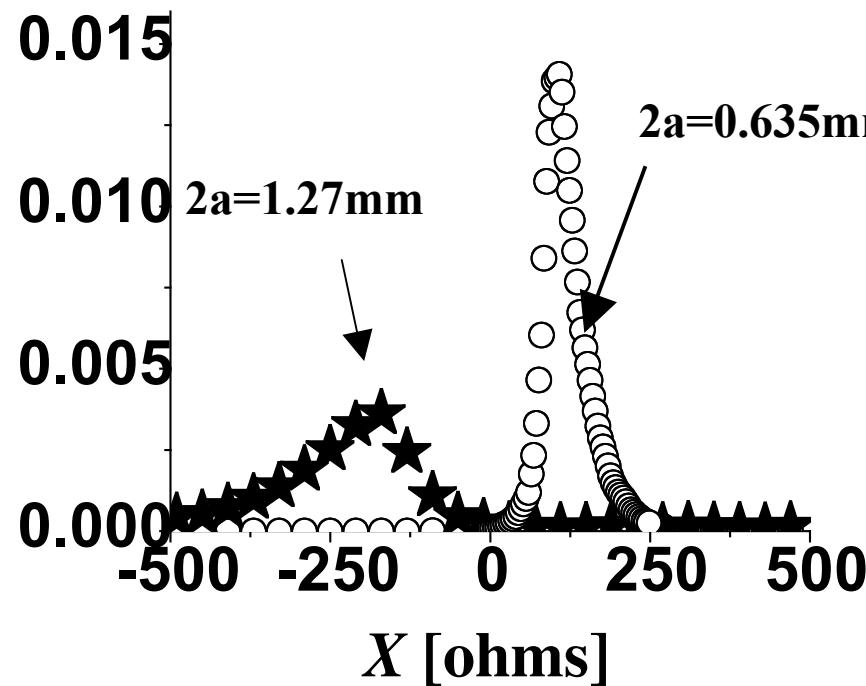
- 2 Dimensional Quarter Bow Tie cavity
- 1-port S and Z measurements in the 6 – 12 GHz range.
- Ensemble average through 100 locations of the perturbation

Importance of Normalization

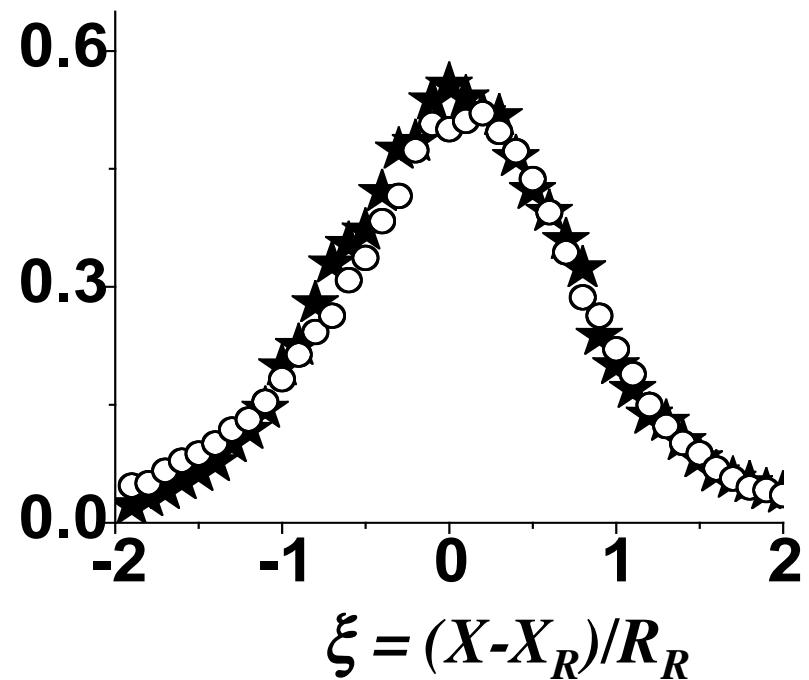
$$Z = j(X_R + R_R \xi)$$



Raw Data

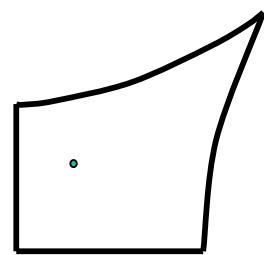


Normalized

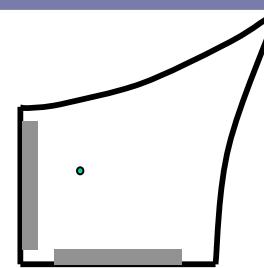


Testing the Effects of Varying Loss

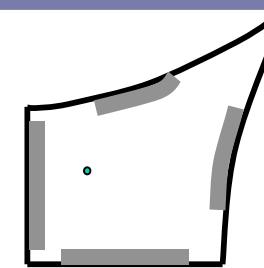
$$Z = jX_R + R_R(\rho + j\xi)$$



Low Loss

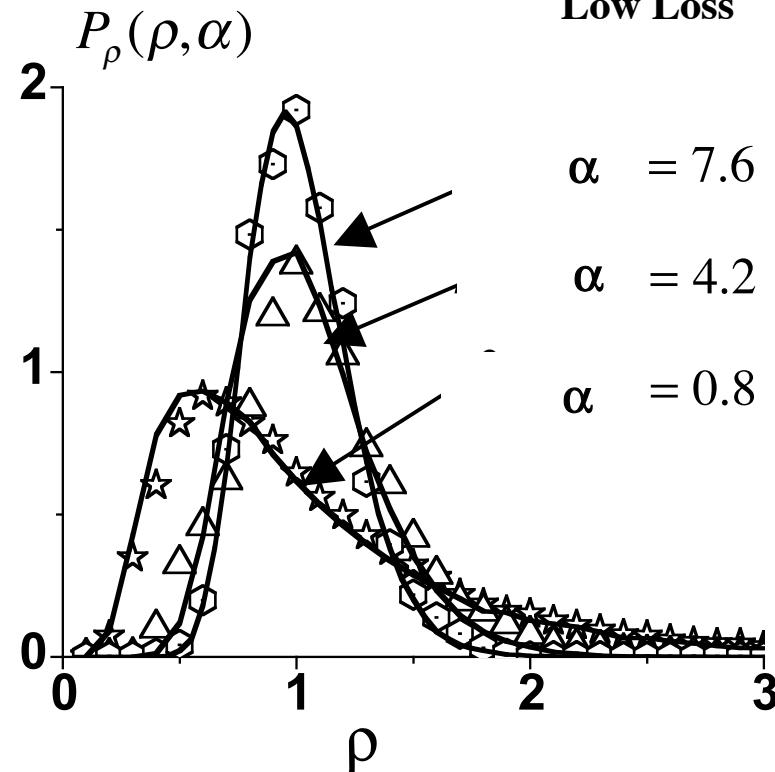
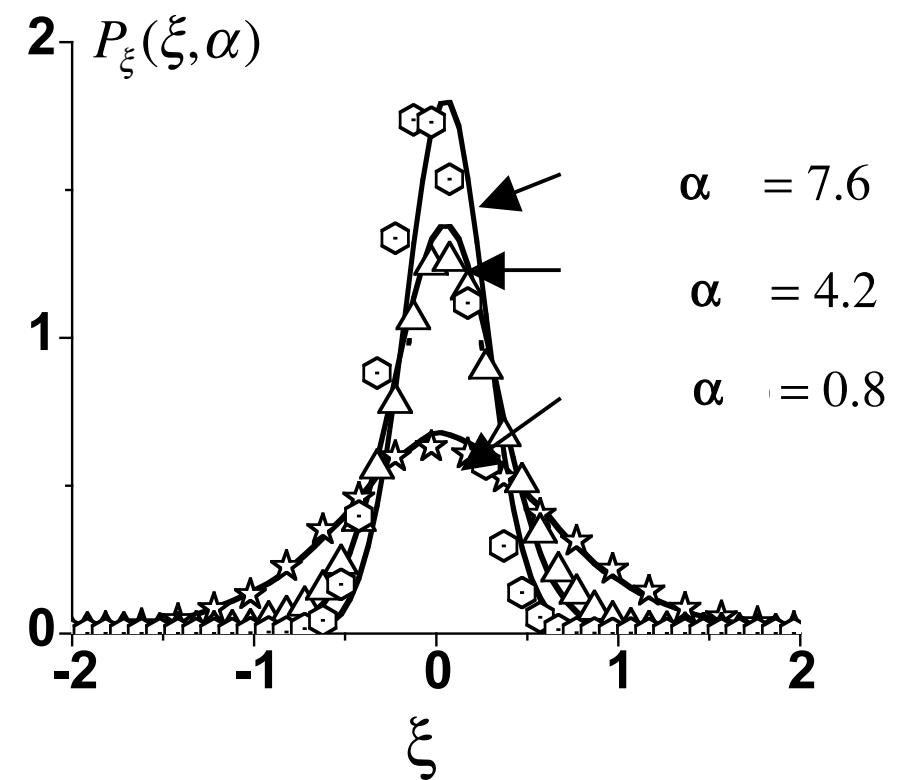


Intermediate Loss



High Loss

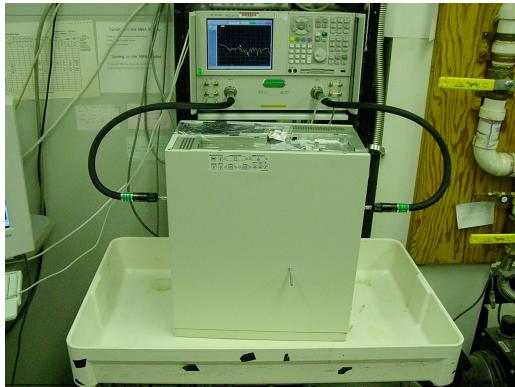
$$\alpha = \frac{\omega}{2Q\Delta\omega}$$



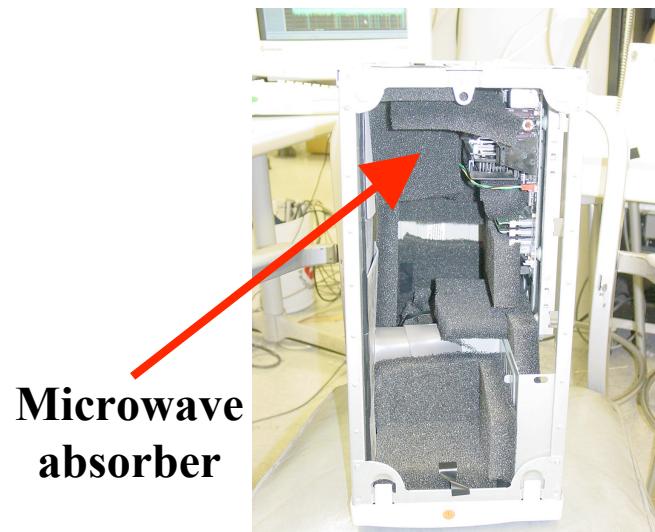
Validation of the Model 3D - S. Hemmady

- Frequency Range: 2GHz to 20 GHz ($\lambda \ll L$)

- Ensemble Averaging over ~20 positions of the mode-stirrer.

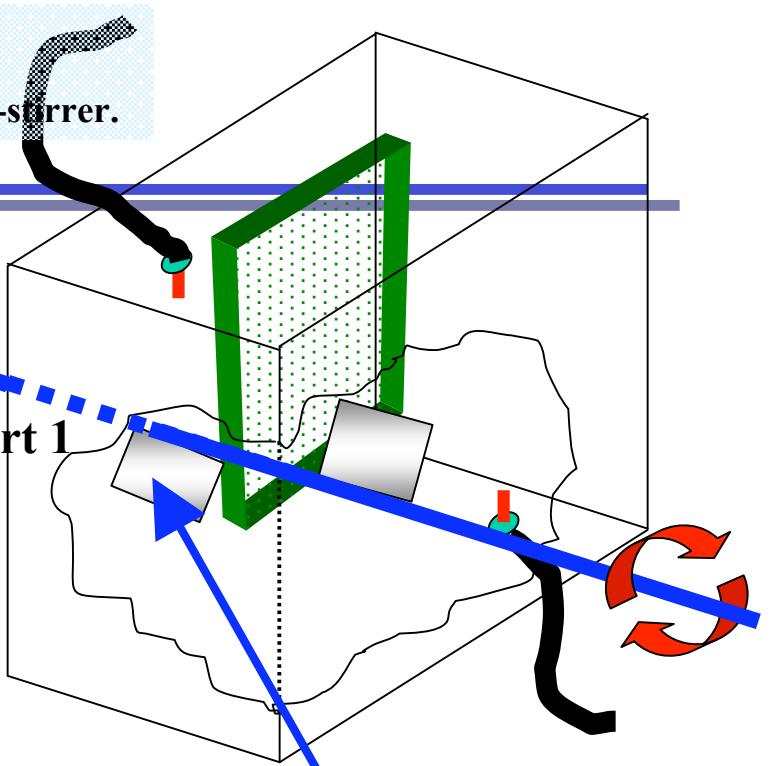


Experimental Setup [Cavity Case]



Microwave absorber

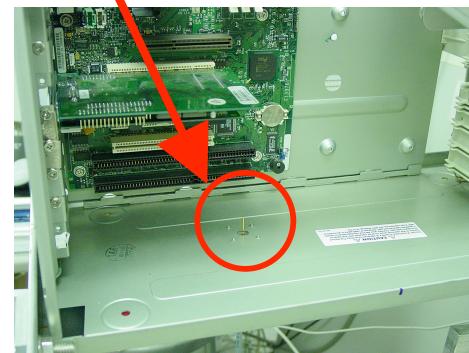
Port Radiation Measurement Setup



Port 2

Port 1

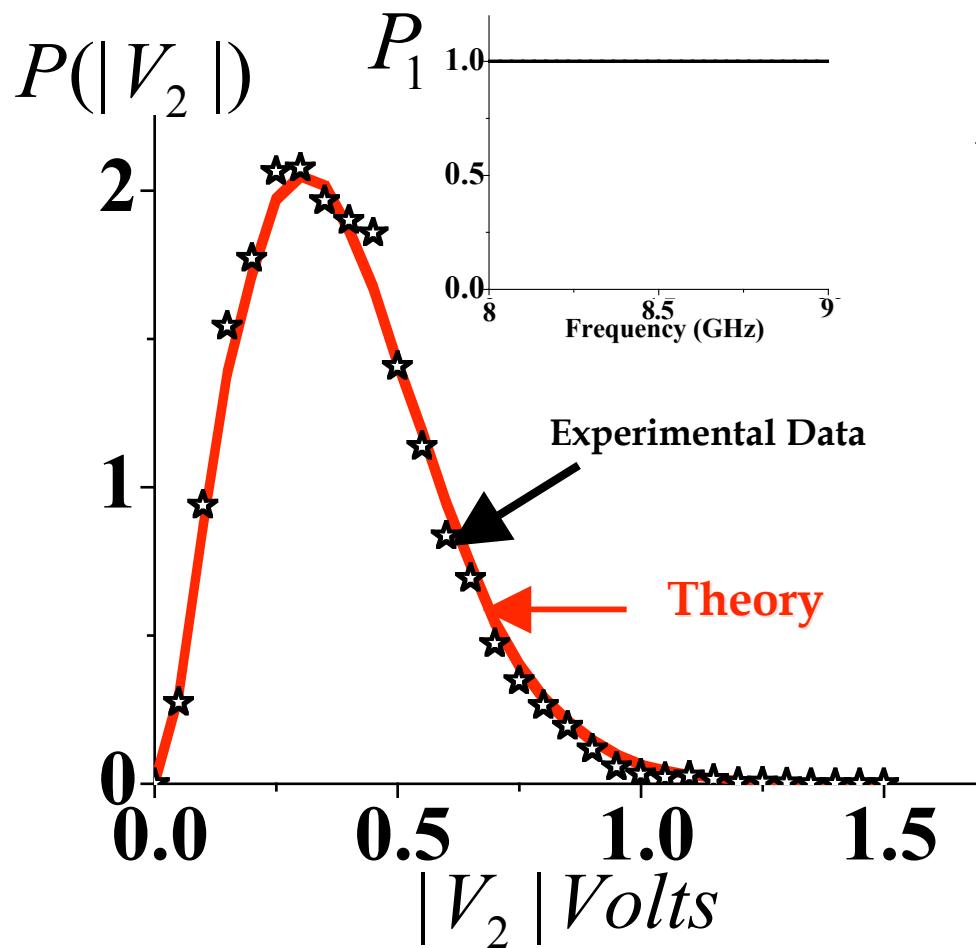
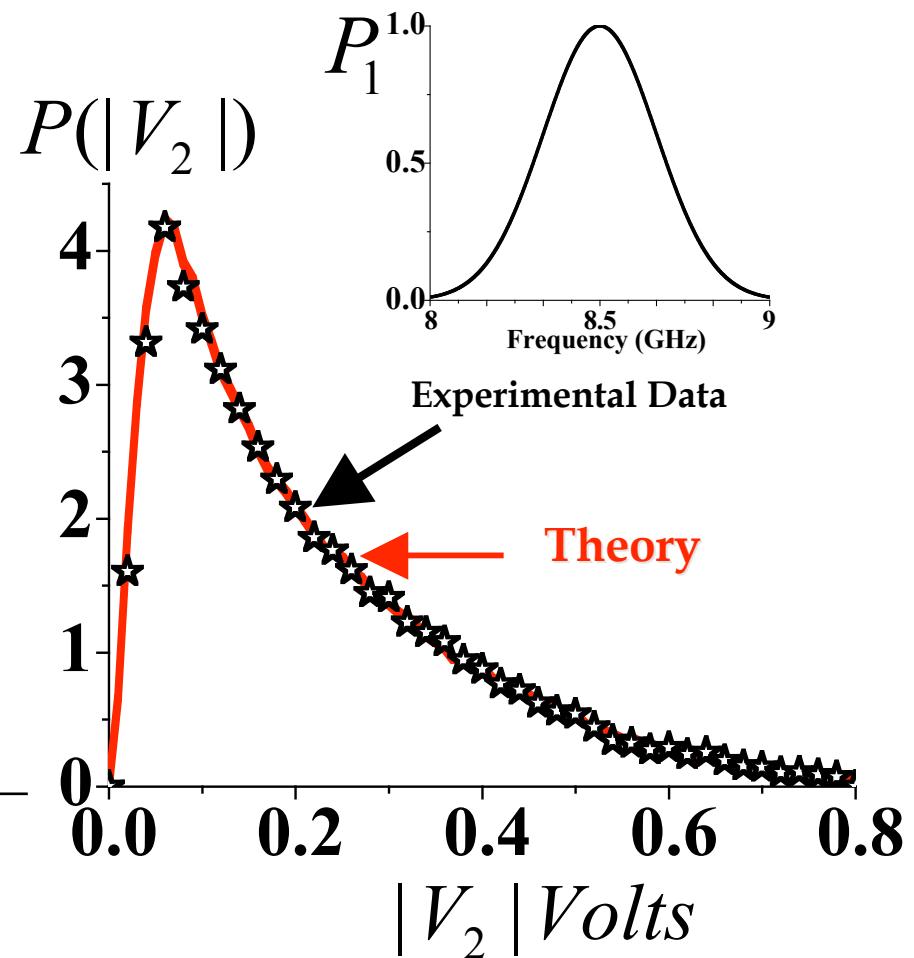
Paddle-Wheel Mode-Stirrer



PDF of voltages on port 2 for different power-spectral densities radiated at Port 1

Flat PSD radiated from port 1

Gaussian-shaped PSD radiated from port 1



Unexpected Frequency Dependence of Median Cavity Reactance

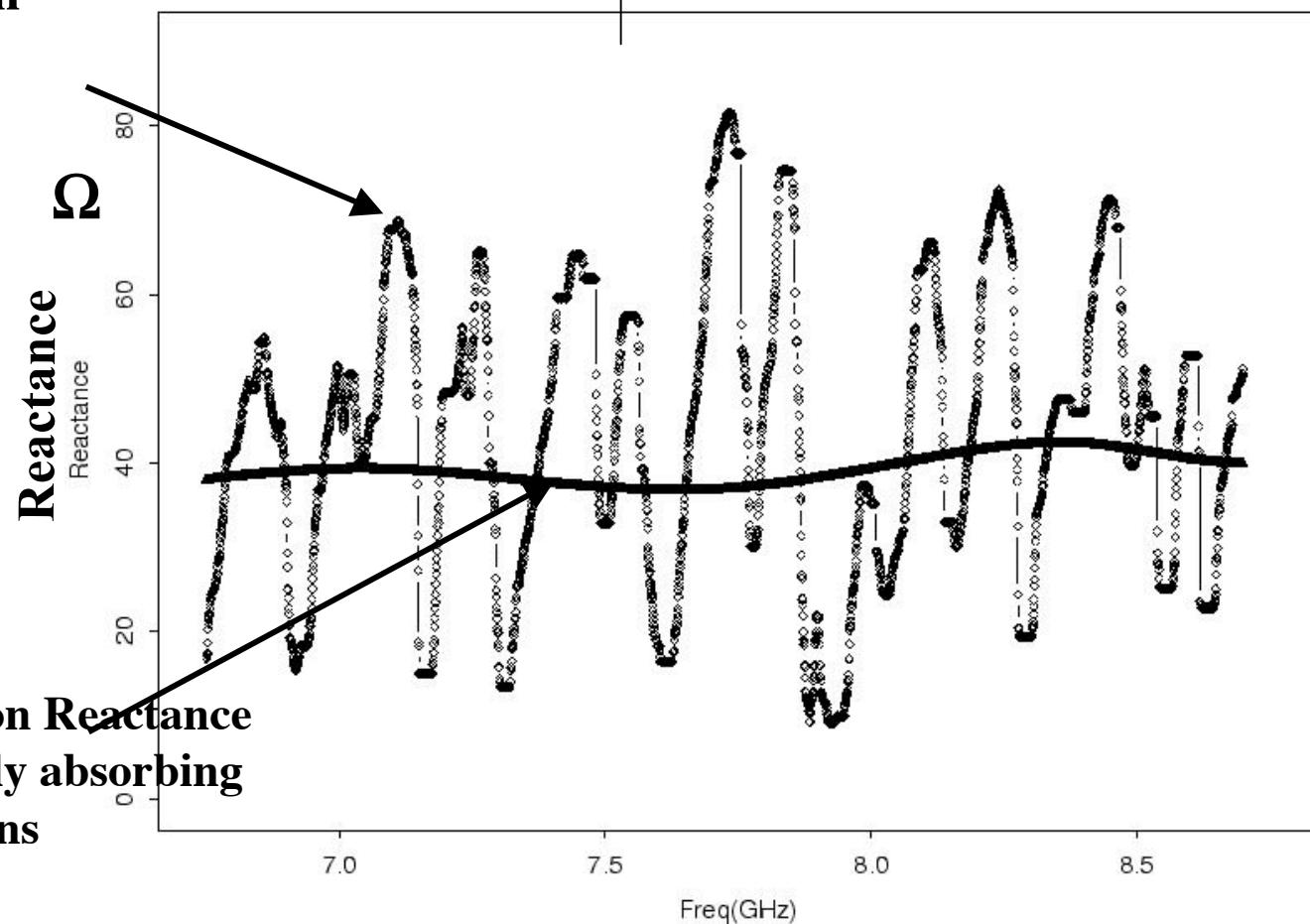
Calculated: Median Reactance for 100 locations of disc

Effect of Reflections ?

Expected: Radiation Reactance
HFSS with perfectly absorbing
Boundary conditions

$$\Delta f_{\text{res}} = .016 \text{ GHz}$$

$$\Delta f = .3 \text{ GHz}, L = 100 \text{ cm}$$



Effect of Direct Ray Paths

Original Random Coupling Model (RCM)

- RF energy is randomized on entering cavity
- Only radiation impedance of ports, cavity volume and average Q are important

In some geometries, or in narrow frequency bands specifics of internal geometry are important

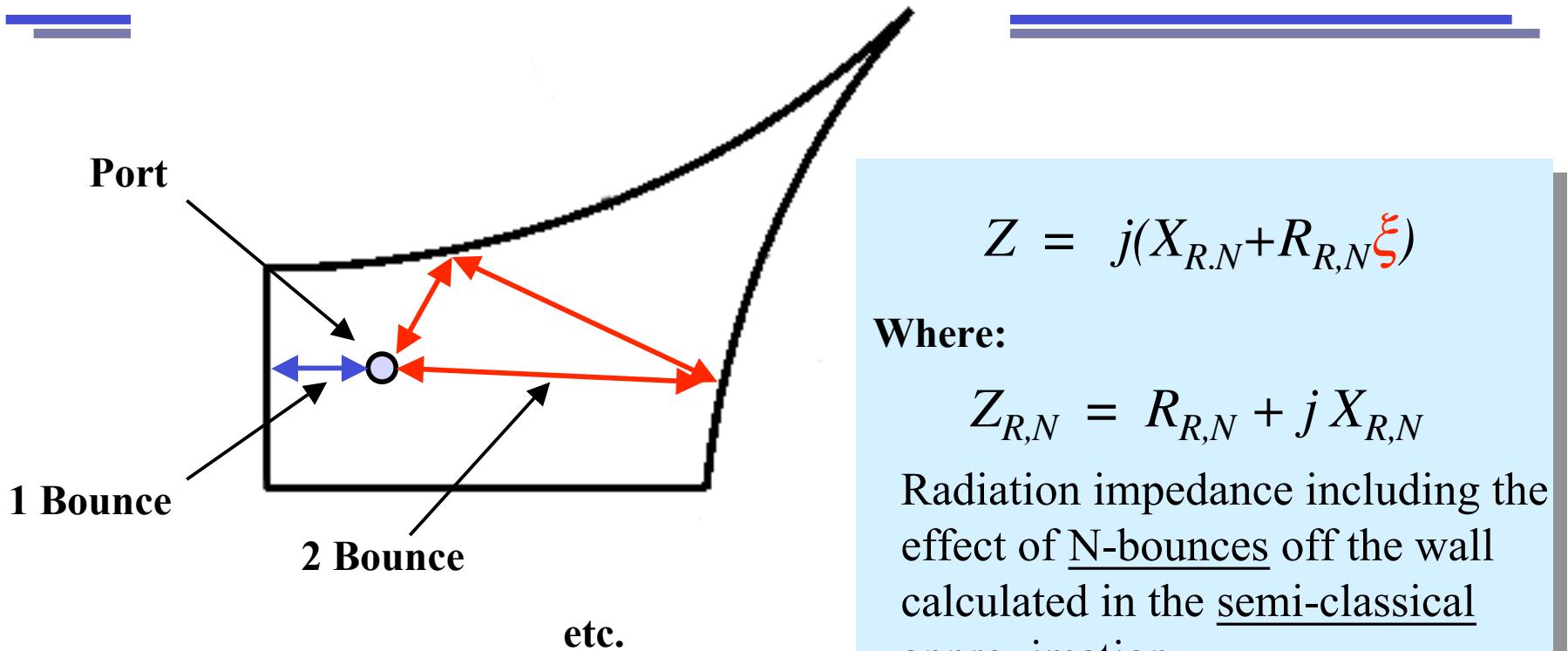
Modified Random Coupling Model

- J. Hart et al., PHYSICAL REVIEW E 80, 041109 (2009)
- Allows for systematic improvement by inclusion of geometric details if known
- Can be used in conjunction with measured data

Using the Random Coupling Model, extended to include the effect of direct paths, we can now derive these two fading distributions.

Effect of Short Ray Paths

Hart et al. PRE 80, 041109 (2009).



Semi-classical Green's function in 2D

$$Z = j(X_{R,N} + R_{R,N}\xi)$$

Where:

$$Z_{R,N} = R_{R,N} + j X_{R,N}$$

Radiation impedance including the effect of N-bounces off the wall calculated in the semi-classical approximation

$$G(\mathbf{r}, \mathbf{r}') = \frac{1}{4} \left[H_0^{(1)}(k|\mathbf{r} - \mathbf{r}'|) + \sum_{paths-j} i \left(\frac{2}{\pi} \left| \frac{\partial^2 L_j(\mathbf{r}, \mathbf{r}')}{\partial \mathbf{r}_\perp \partial \mathbf{r}'_\perp} \right| \right)^{1/2} \exp \left[ikL_j(\mathbf{r}, \mathbf{r}') + i\pi(n - 1/4) \right] \right]$$

Modified RCM

J. Hart et al., PHYSICAL REVIEW E 80, 041109 (2009)

Original RCM:

$$\underline{\underline{Z}}^{cav} = j \operatorname{Im}(\underline{\underline{Z}}^{rad}) + [\underline{\underline{R}}^{rad}]^{1/2} \cdot \underline{\underline{\xi}} \cdot [\underline{\underline{R}}^{rad}]^{1/2}$$

Modified RCM:

$$\underline{\underline{Z}}^{cav} = j \operatorname{Im}(\underline{\underline{Z}}^{ave}) + [\underline{\underline{R}}^{ave}]^{1/2} \cdot \underline{\underline{\xi}} \cdot [\underline{\underline{R}}^{ave}]^{1/2}$$

Here $\underline{\underline{Z}}^{ave}$ is the cavity impedance averaged over a prescribed frequency band

- can be measured
- can be calculated if enough geometry is known

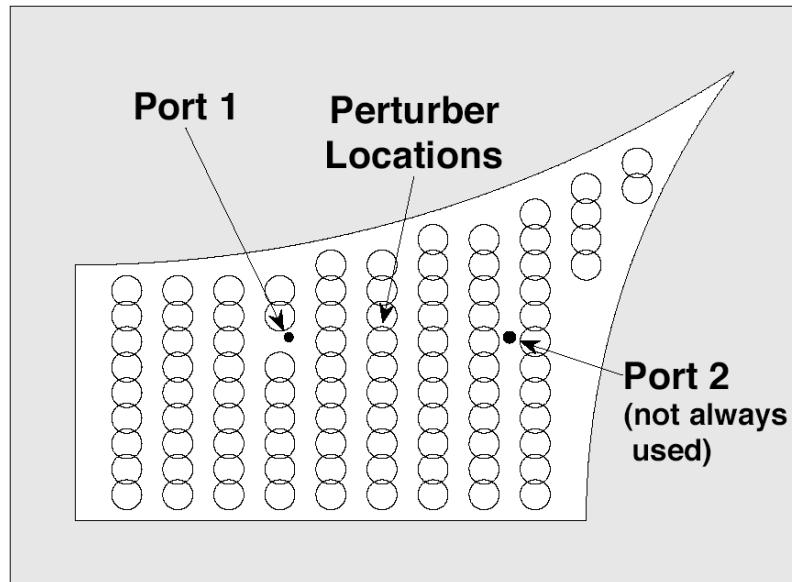
Calculated in geometric optics limit: $\underline{\underline{Z}}^{ave} = j \operatorname{Im}(\underline{\underline{Z}}^{rad}) + [\underline{\underline{R}}^{rad}]^{1/2} \cdot \underline{\underline{\varsigma}} \cdot [\underline{\underline{R}}^{rad}]^{1/2}$

$$(\underline{\underline{\varsigma}})_{mn} = \sum_{\substack{\text{ray paths} - b \\ m \rightarrow n}} p_{b,mn} C_{b,mn} \exp[-jS_{b,mn}(\omega) - j\pi/4]$$

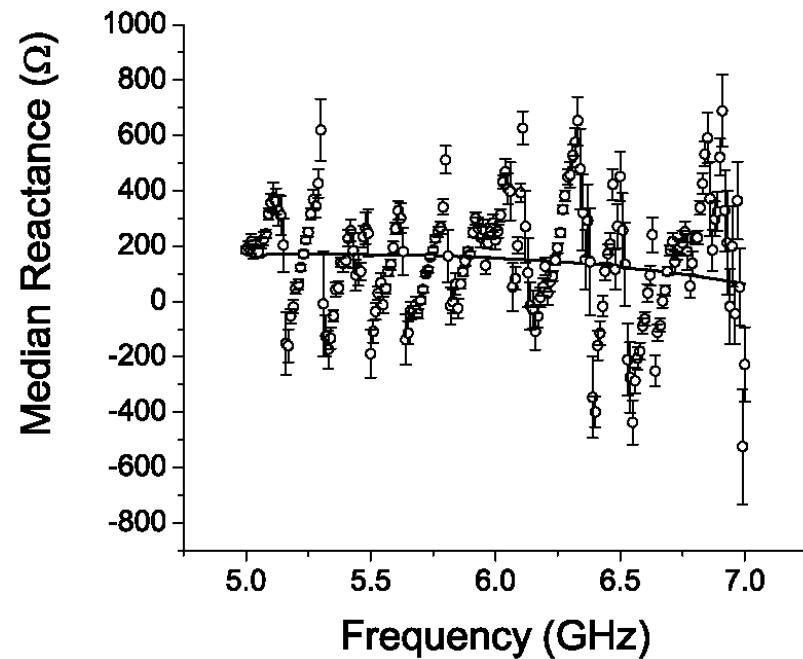
$p_{b,mn}$ -attenuation, $C_{b,mn}$ - ray defocusing, $S_{b,mn}$ ray phase change = $kL_{b,mn}$

Numerical Tests (HFSS) on Bow Tie Cavity

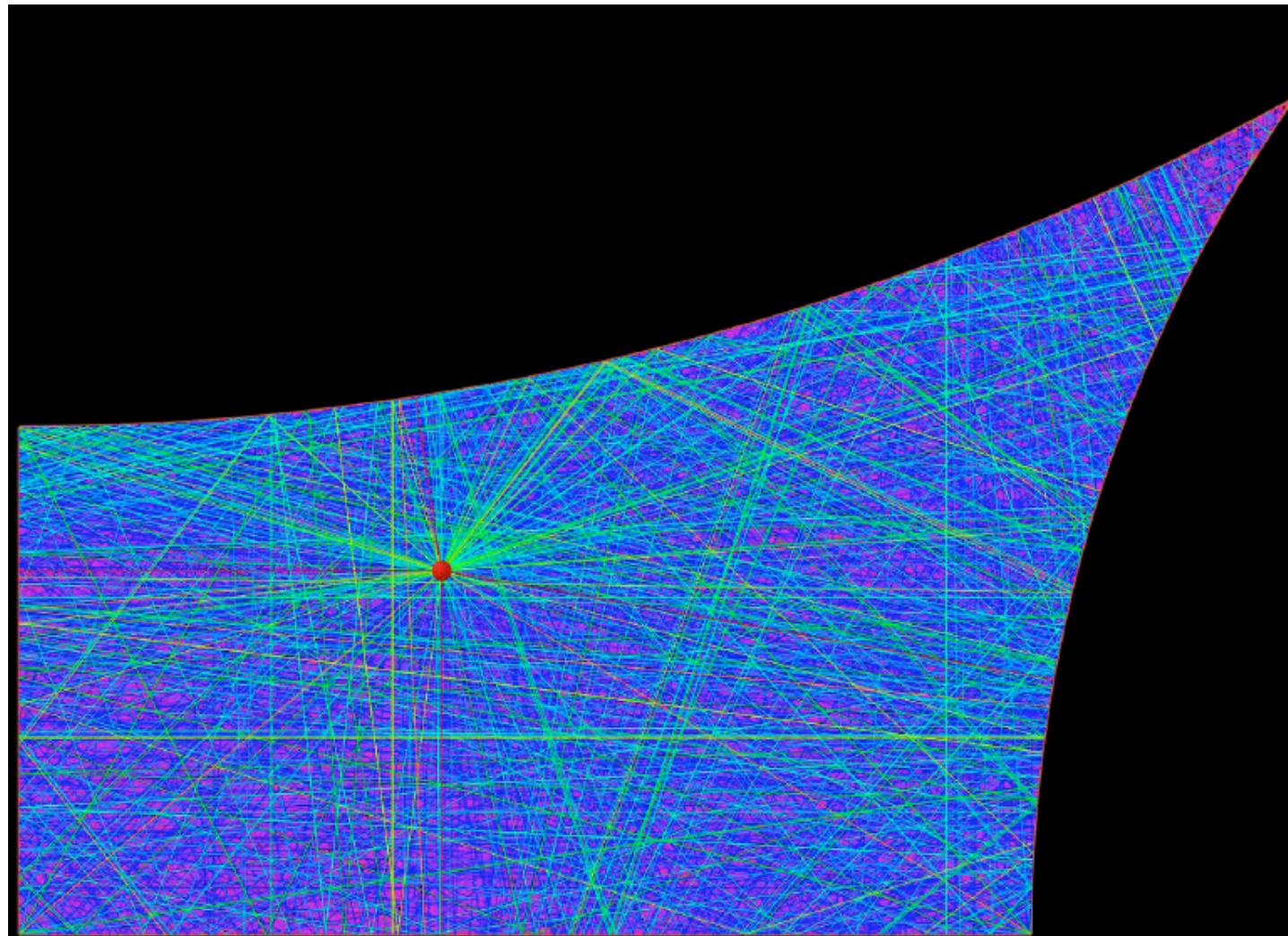
95 realizations generated by moving a circular perturber



Average (over realizations)
impedance seen at port #1

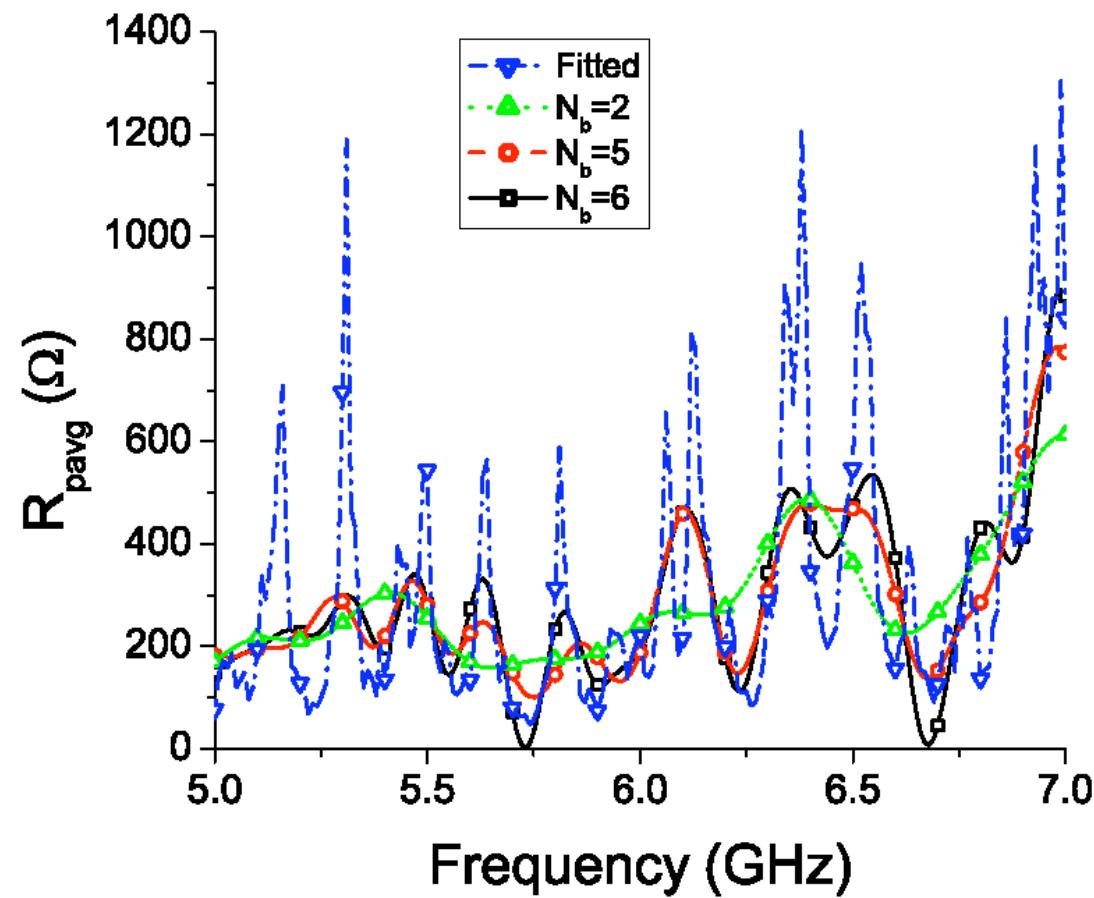


Multiple Bounces in the Bow Tie



Prediction of Average Resistance

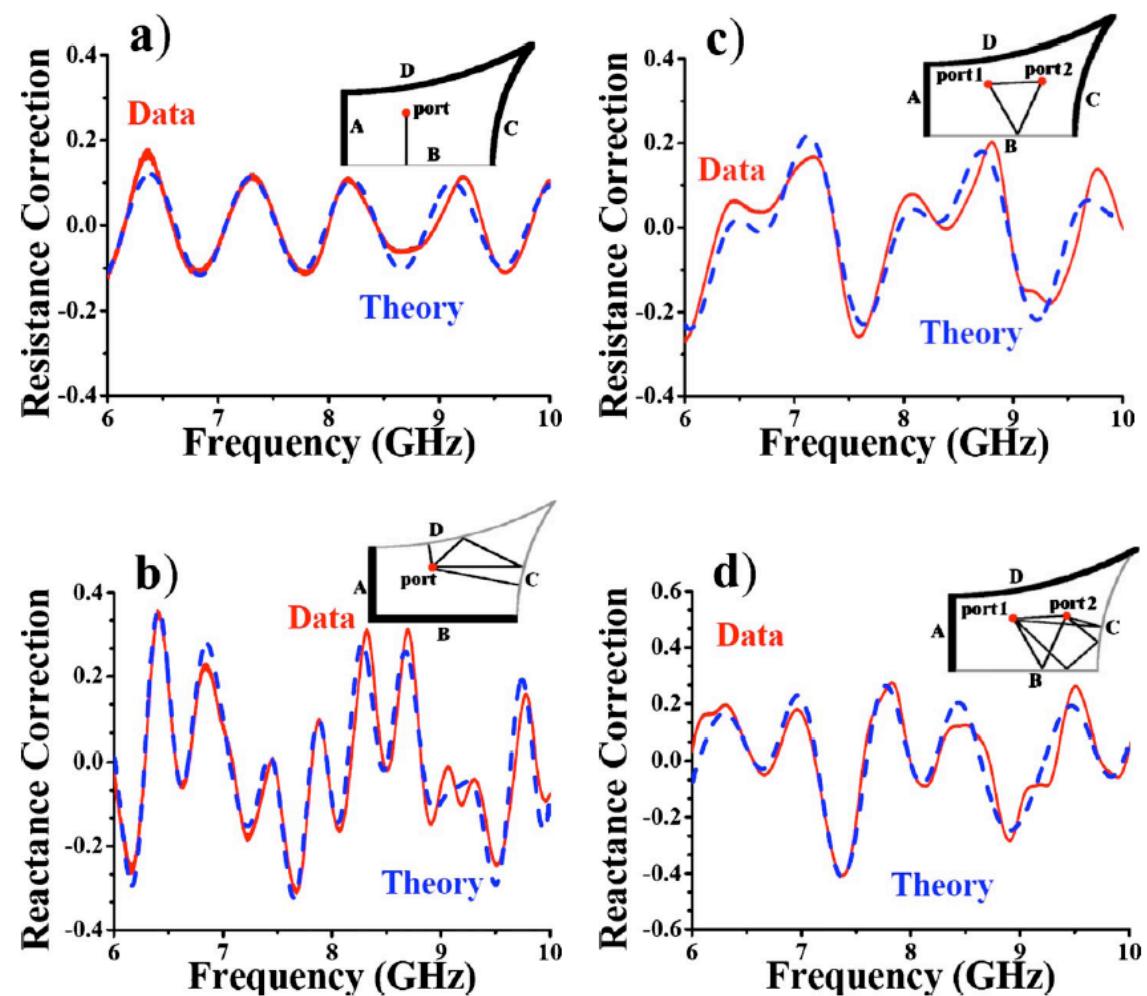
Theory includes contributions from $N=2, 4, 6$ bounces.



Measurement of Effect of Short Orbits

Yeh et al. PRE 82, 041114 (2010).

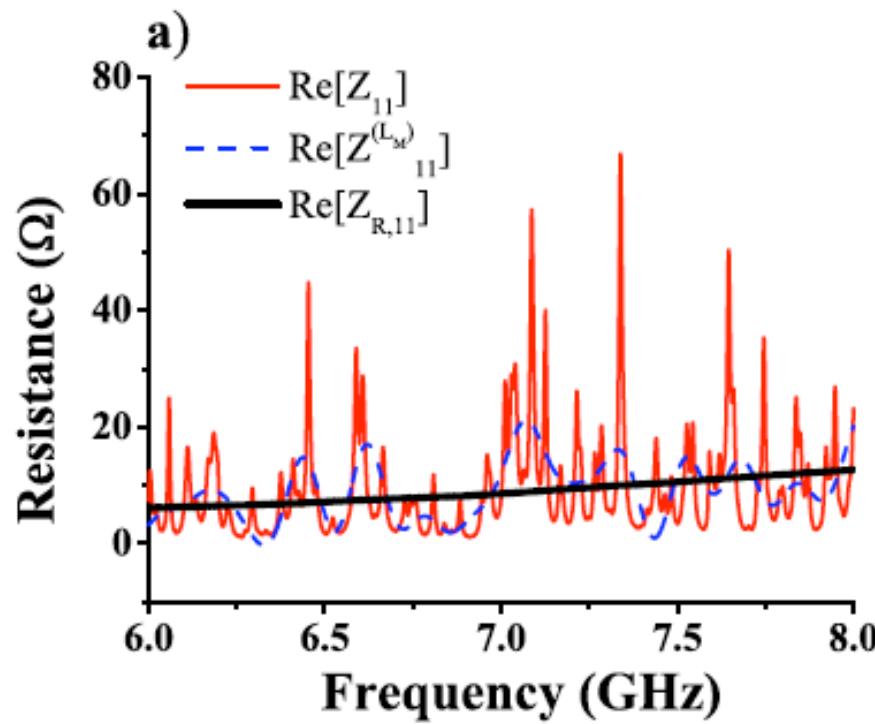
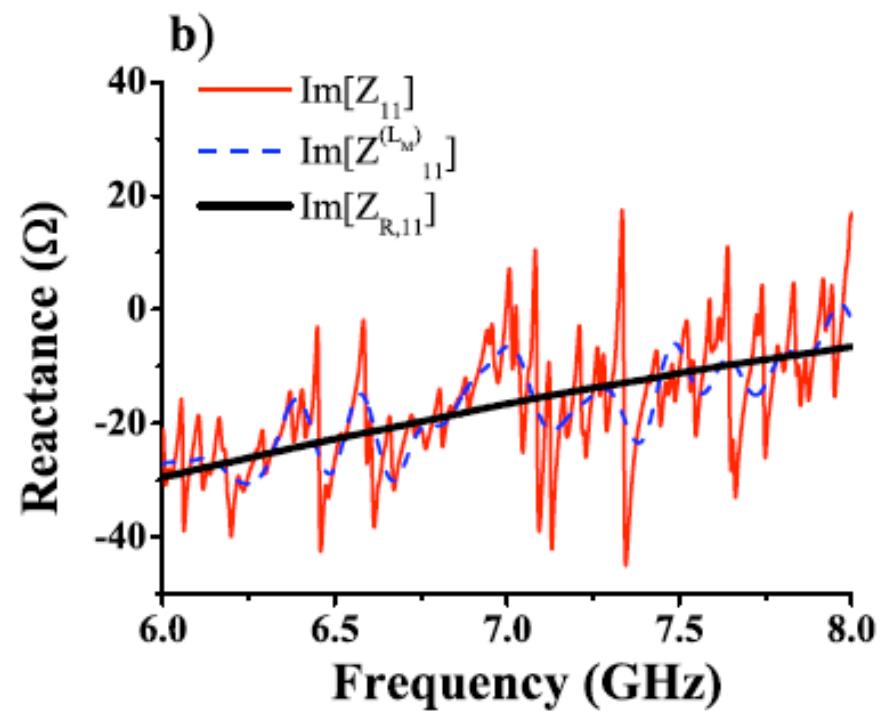
$$Z_{\text{correction}} = \frac{Z - Z_{\text{Rad}}}{R_{\text{Rad}}}$$



Measurement of Z_{11}

Single Realization

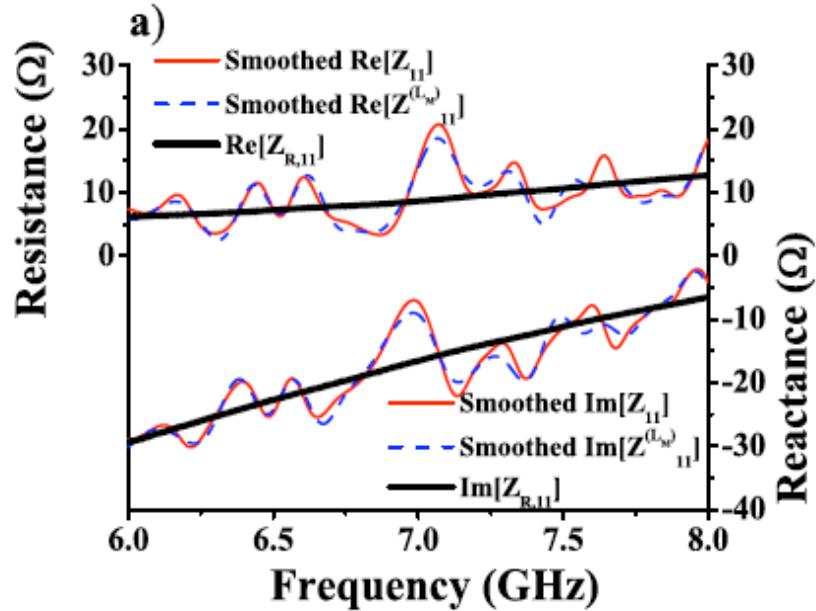
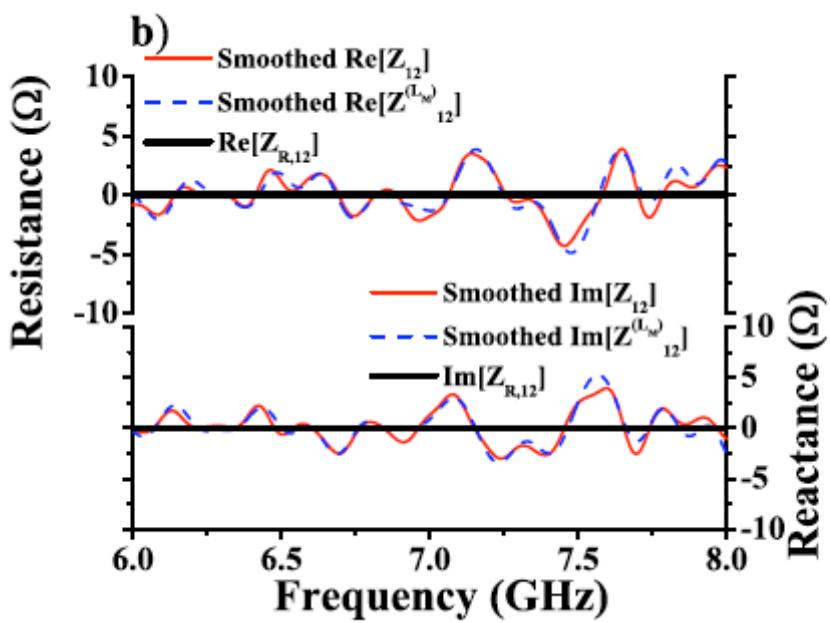
- Measured Data
- Theory, 584 trajectories
- Radiation Impedance



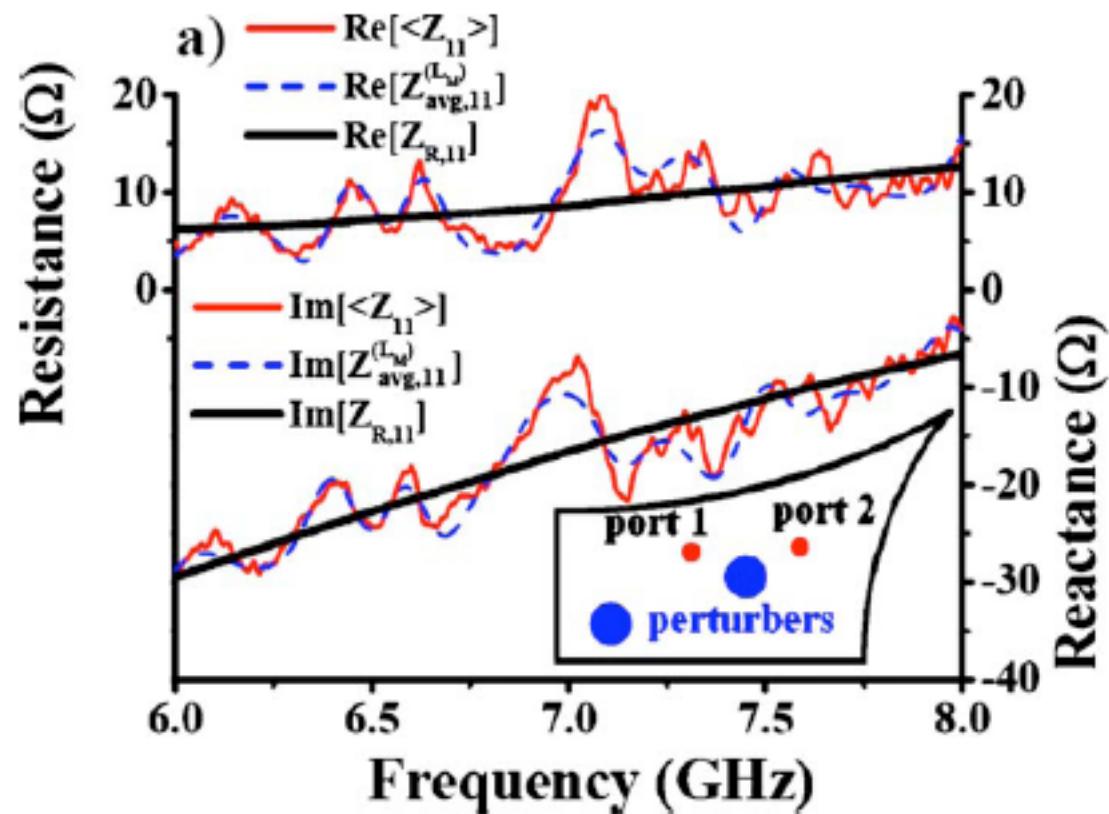
Frequency Smooth Data

Window = 240 MHz

Single Realization



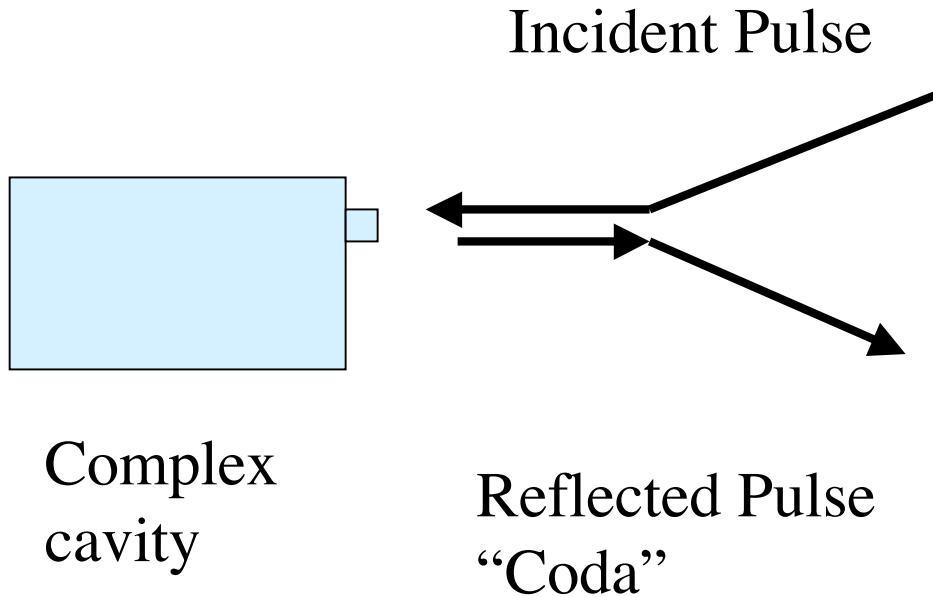
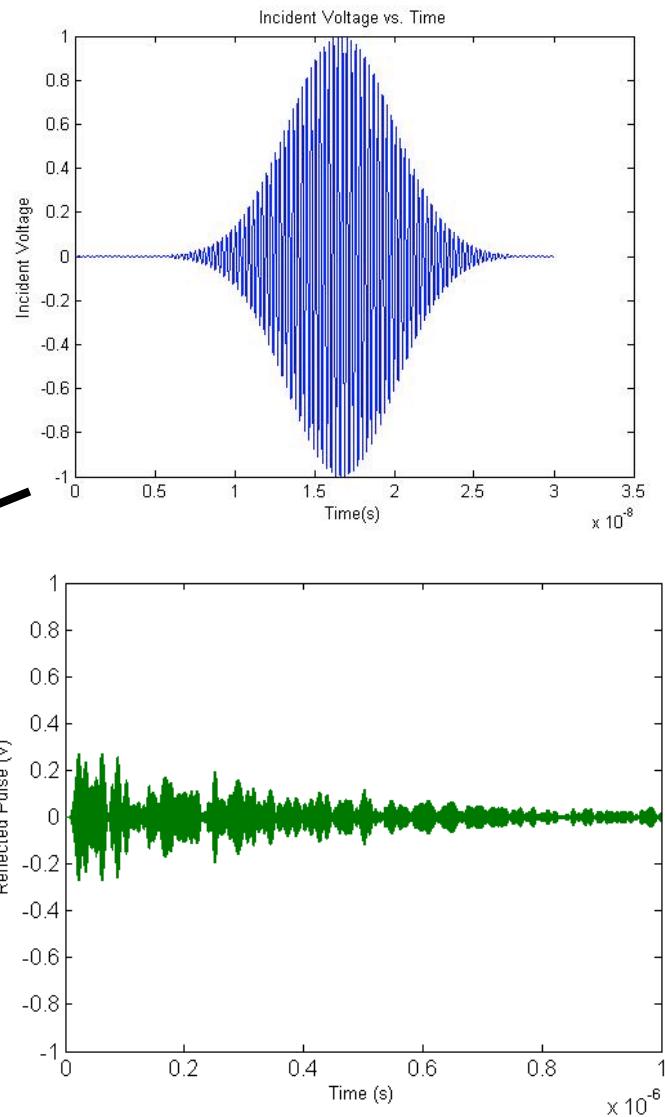
Configuration Averaging 100 Realizations



Contributions to theory
from trajectories blocked
by perturber are
dropped.

Time Decay of Cavity Radiation

Question: What are the characteristics of the time decaying pulse emerging from the cavity?



Long-Time Properties of Reflected Pulse

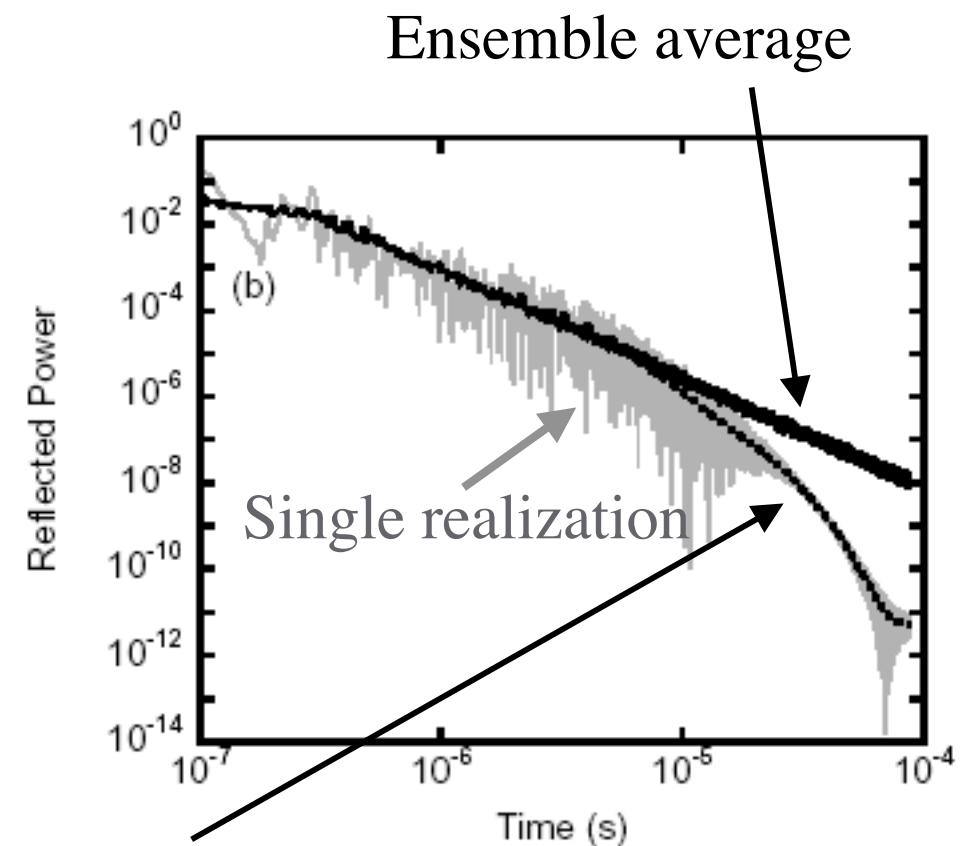
Hart et al. PRE 79, 016208 (2009)

Output signal is a superposition of modes

$$V(t) = \sum_n V_n \exp[j(\omega_n + \gamma_n)t]$$

The following quantities have random distributions, determined by Random Matrix Theory (RMT)

$$V_n, \omega_n, \gamma_n$$



Time average of single realization

General Results for Reflected Power

J. Hart et al. PRE to be published

1. Ensemble average decays with power law (already known)
2. Time average of an individual realization follows ensemble average for some time, and then decays exponentially
3. Individual realizations oscillate about their time average.
4. Transition from algebraic to exponential decay obeys universal distribution (parameters: pulse bandwidth, cavity mode spacing, port coupling strength)

Universal Transition for Gaussian Pulses

J. Hart et al. PRE (2009)

Ensemble Average

$$\bar{P}(t) \sim t^{-5/2}$$

$C(\alpha, \tau)$ = fraction of realizations with

$$P(t) < \alpha \bar{P}(t)$$

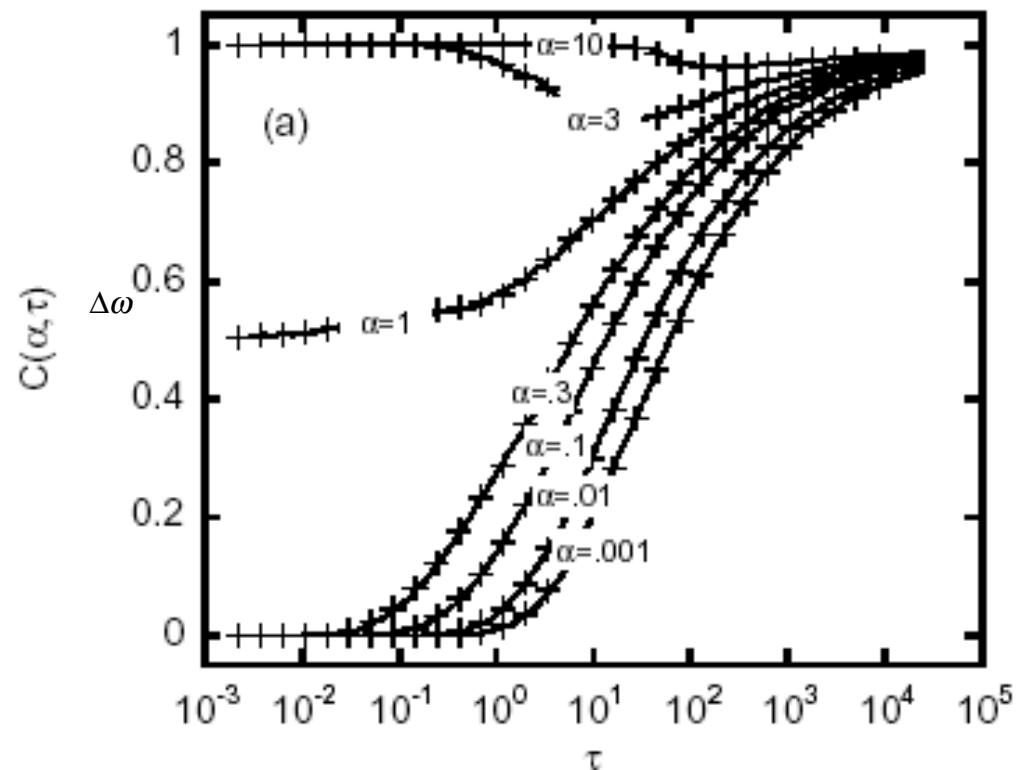
Normalized time

$$\tau = \frac{t \Delta \omega^3}{\omega_B^2 P_0}$$

$\Delta \omega$ -mode spacing

ω_B -pulse bandwidth

Theory for two different pulse widths



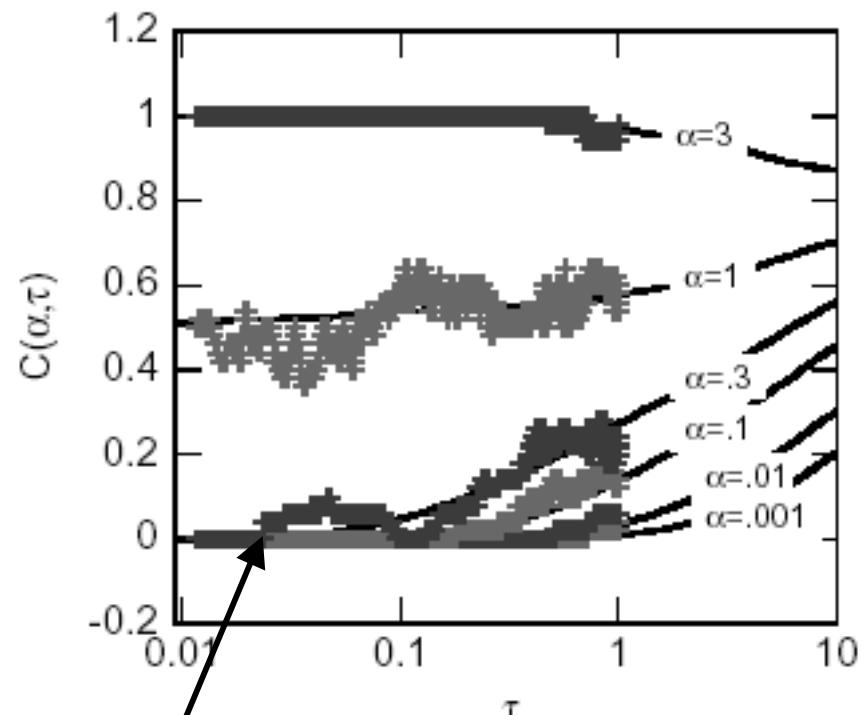
P_0 -depends on port coupling

Numerical verification via simulation

$C(\alpha, \tau)$ = fraction of realizations with

$$P(t) < \alpha \bar{P}(t)$$

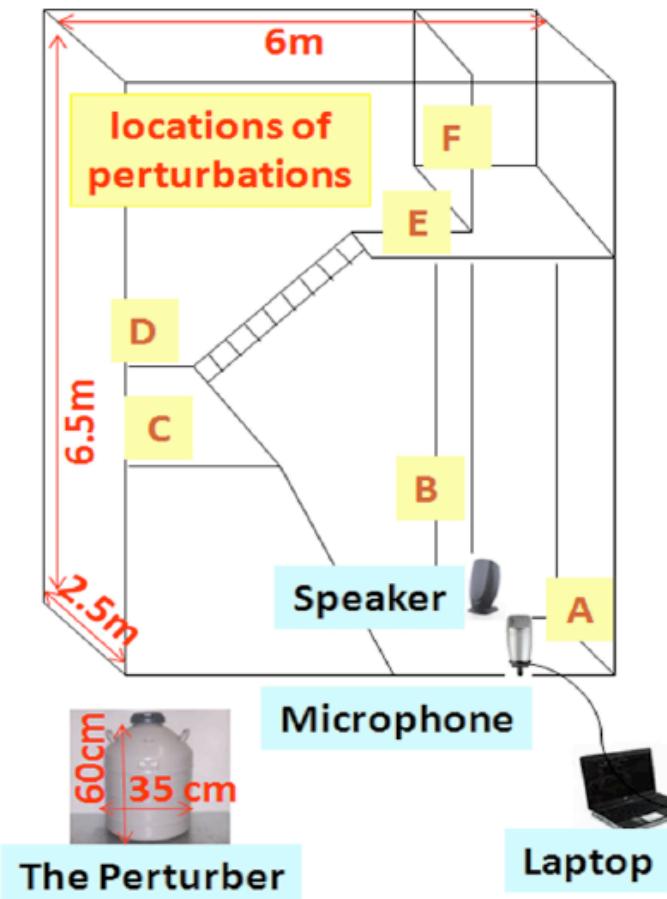
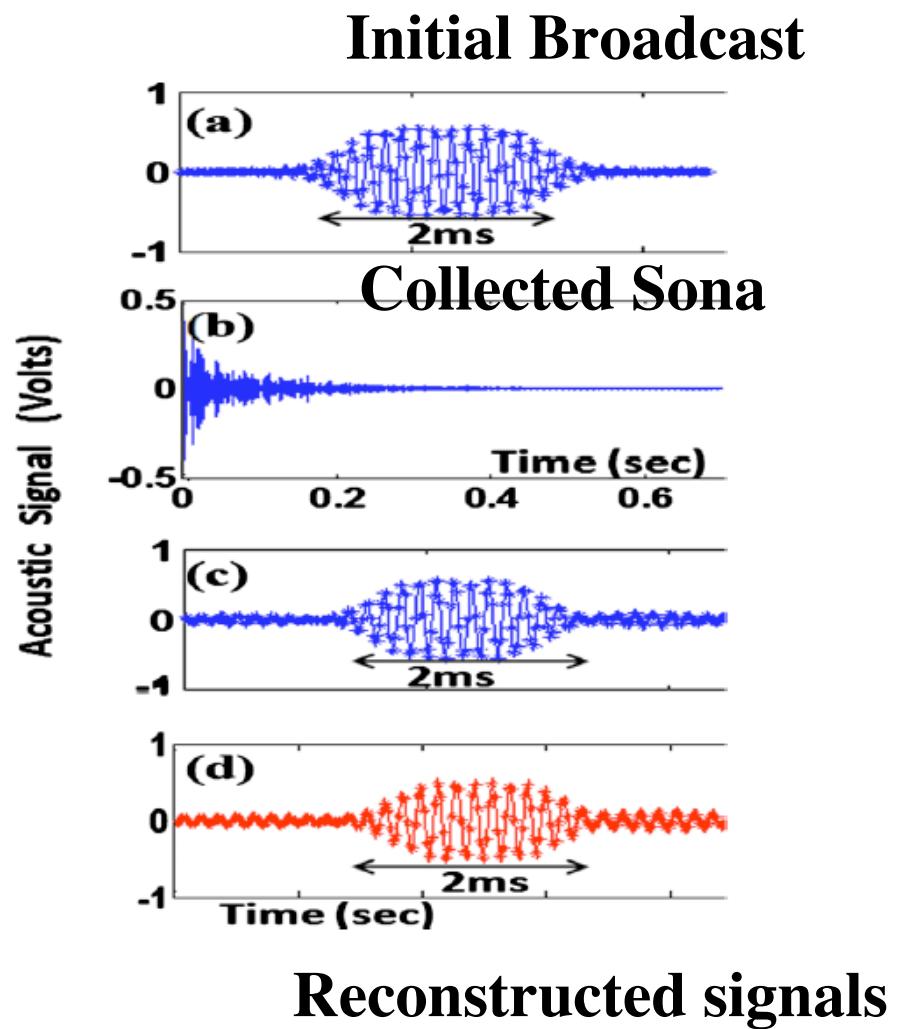
$$\tau = \frac{t \Delta \omega^3}{\omega_B^2 P_0}$$



50 realizations of time domain equations

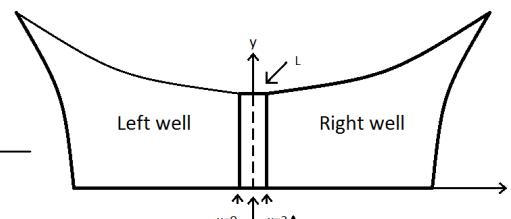
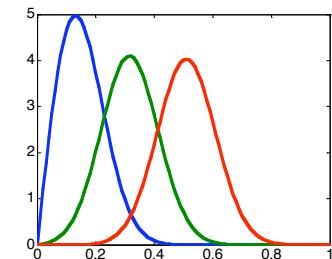
Sensing small changes in a wave chaotic scattering system

B. Taddese, J. Ap. Phys. 108, 114911 (2010)



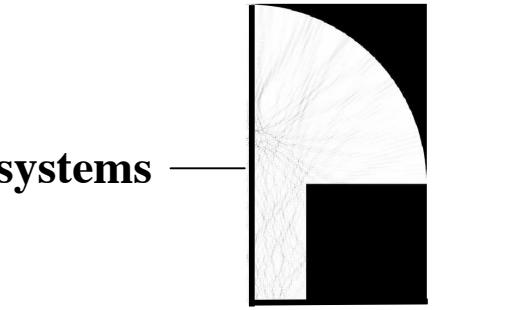
Recent Developments

1. First Principles derivation of fading distributions



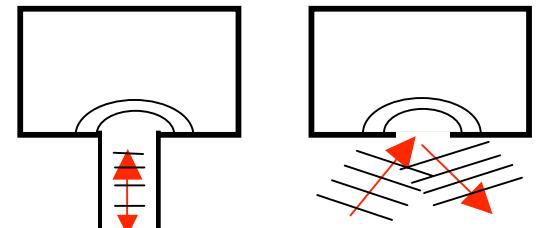
2. Coupling of cavities

3. Statistics of fields in chains of coupled cavities



4. Statistics of fields in mixed systems

5. Coupling by apertures



Conclusions

Frequency Domain:

Universal (RMT) and system specific contributions to statistics of wave scattering.

Effects of losses, antennas, direct ray paths can be included.

Time Domain:

Decay of wave energy exhibits universal behavior
Time reversal symmetry can be used sensitively determine changes in an environment