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Motivation: Electromagnetic Coupling to

Electronic Circuits in Enclosures

Schematic

L

L |

cables

Integrated circuits

connedtors

circuit boards

* What can be said about coupling without

solving in detail the complicated EM

problem ?

- Statistical Description !

* Coupling of external radiation to
computer circuits is a complex
processes:
apertures
resonant cavities
transmission lines
circuit elements

* Intermediate frequency range
involves many interacting resonances

* System size >>Wavelength

e Chaotic Ray Trajectories
e “Wave Chaos”



What is Wave Chaos?

* Wave propagation- linear phenomena
(response is linearly proportional to
excitation)

* Therefore - not chaotic

* In complex geometries field
distribution are highly sensitive to:
frequency and/or small perturbations

 Classical rays are chaotic-this affects
the field solutions

Two incident rays with slightly
different initial directions have
rapidly diverging trajectories




Random Matrix Theory and Wave
Mechanics

e Nuclear Spectra
Motivated by the then impossibility of calculating spectra of large nucleli,
Wigner (1950°s) conjectured that these spectra have statistical properties
that are the same as those of suitable ensembles of random matrices.

 Quantum Dots & Disordered Systems

Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000).

C.W.J. Beenakker, Rev. Mod. Phys. 69, 731, (1997)

e Acoustic Resonators

R.L. Weaver, J. Acoust. Soc. Am. 85, 1005 (1989)

e Electromagnetic Compatibility

L.K. Warne, K.S. H. Lee, H.G. Hudson, W. A. Johnson, R. E. Jorgenson, and S.L.
Stronach, IEEE Trans. Ant. Prop. 51, 978 (2003).

 Quantum Chaos
F. Haake, Quantum Signatures of Chaos (Springer-Verlag, Berlin 1991).
H.-J. Stockmann, Quantum Chaos (Cambridge University Press, Cambridge 1999)



Eigenfrequency Statistics
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Spacing distributions are characteristic for many systems
Eigenvalues E_ are distributed particular horium
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RMT and Eigenfunction Statistics

Hypothesis: Random matrix theory (RMT) applies to wave problems in the semiclassical
regime (short wavelength), if the ray approximation corresponding to the given wave problem
yields chaotic wave trajectories [McDonald and Kaufman, PRL (1979); Bohigas, et al., PRL
(1984)].

Replace eigenfunction with superposition of random
plane waves (Berry Hypothesis)

A A S A T TR R O ¢, =lim, R{ Zakexp i\ke,- x+9
SIS k_

Random amphtude

Note: Hypothesis now assumed to

. Random direction
apply even for simple systems.

Random phase



Q: What is the nature of the interaction
of the wave chaotic system with the
outside world via the connecting ports?

A difficulty: While the waves within the chaotic
system are presumably described by random matrix
theory in a ‘universal’ (system independent) manner,
the answer to Q. also depends on the non-universal
aspects of the specific geometry of the coupling
between the ports and the chaotic system.

Our Problem - Scattering

Wave
Chaotic
System




Universal and System Specific Aspects

1. Entry of energy to cavity
determined by properties of port.
- System specific

- Applies also to exit
¢<:Wave L e . . .
Chaotic | Wave fields inside described by
System RMT and Berry Hypothesis

- Universal statistics
- Some system specific

M port 3 dependence

Note, interference is still accounted
for.



Black Box Representation
N - Port System

Schematic

B

conne(

Integrated circuits

cables .

L |

tors

circuit boards

Incoming
RF Power

Device Terminal

N- Port
System




N ports

* voltages and currents,
* incoming and outgoing
waves

7 matrix
(V) (1)
2l oz |"
kVN/ \L,)
voltage current

Z. and S-Matrices

Whatis S, ?

N- Port
System

Vi, 1,
W= o—»
vlc} ©
o—»>
O
Vo Ly o
i S
Vy & o
S matrix
/‘/1‘\ (VIJF\
VvV, A
= s |
Va1 / \Vz\;rl)

outgoing Incoming

S=Z+2)(Z-Z,)
Z(w), S(w)

» Complicated function of
frequency

* Details depend sensitively on
unknown parameters



Lossless:
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Statistical Model of Z Matrix

Zy(w)

Resistance Ry(w)

[
Por Losses  —
i | N —
| Other ports
Rg(®) _
Port 2 |_J
+ RRZ((D)
Port 1
| Free-space radiation
— |

=Ry(0)+ X, (®)

Statistical Model Impedance

Awww

Z,.,-<w>———ZR @R @) 0w o

Radiation Resistance Ry, (®)
System

parameters < A@?, - mean spectral spacing

L O -quality factor

Statistical {mn - random spectrum

parameters w;,~ Guassian Random variables
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2-@@9 Compact Expression for Impedance Matrix

TRy LN

Statistical Model for Cavity Impedance

7 = ilm(émd)Jr[Emdll/z '§'[Eradr/2

Radiation Impedance - Ports

grad _ iIm<Zrad)_|_ I:erad

Statistics generated by RMT

I A wh, e ORVS
5 k(1 +i/Q)— k.|

AN

Eigenvalues of a RM

Lorentzian Random Matrix ( o=k %/(QAk?))

g:



)t S Two Approaches

TRy

e /() construction - Microscopic approach
Uses pieces of problem: R,, A®?, Q to construct Z and S.

e Poisson Kernel - Global Approach to §
(P. A. Mello, P. Pereyra, and A. Frankel, Ann of Phys. 161, 251 (1985))

Statistics of S - Matrix determined by its average E{S}
- P(SIE{S}) includes details of coupling

e Equivalence: Brouwer, Phys. Rev B51, 16878 (1995)

Some Relevant References

P. A. Mello et al., Ann. Phys. 161, 254 (1985).

P. W. Brouwer, Phys. Rev. B 51 (1995).

E. Kogan et al., Phys. Rev. E 61 (2000).

R. A. Mendez-Sanchez et al., Phys. Rev. Lett. 91, (2003).

L. K. Warne et al., IEEE Trans. Antennas & Prop. 51, 978 (2003).



HFESS - Solutions
Bow-Tie Cavity

Expect: Z = j(Xp+RyE)
& - unit Lorentzian

/ Krieger, Ann. Phys. 42, 375 (1967)
Mello, “Mesoscopic Quantum Physics” 1995

Fyodorov and Sommers, J. Math Phys. 38, 1918

R =90cm

(1997)
—
= R #63.5¢1
= e
T Moveable conducting
¥ \ disk - .6 cm diameter
i 5 o ’f “Proverbial soda can”
(b)  Side View Cavity impedance
| calculated for
h=0.2cm 100 locations of disk
f 4000 frequencies

mner radius 0.1 ¢
o ~ 6.75 GHz t0 8.75 GHz
s, Olter radius 0.25em

Coaxial Transmission T ine




Frequency Dependence of Reactance
for a Single Realization

Mean spacing 6f =~ .016 GHz
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Distribution of Fluctuating Cavity Impedance

E=(X-X (w)/R, ()

-8.25 GHz

7.75 GHz

7.25 GHz

8.75 GHz




Median Impedance for
100 locations of disc

Effect of strong
Reflections ?

Reactance
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Radiation Reactance
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Comparison of HFSS Results and Model
for Pdf’s of Normalized Impedance

Normalized Reactance Normalized Resistance
07
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Antenna Entry Point

EXPERIMENTAL Test
S. Hemmady et al., PRL 94, 014102 (2005)

Circular
Arc

R=42”

8.5”

* SCANNED
PERTURBATION

17> 2147

g

>

¢ 2 Dimensional Quarter Bow Tie cavity
e |-port S and Z measurements in the 6 — 12 GHz range.
e Ensemble average through 100 locations of the perturbation
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Importance of Normalization

, ‘ ‘ Top plat
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soenYalidation of the Model 3D - S. Hemmady

18 :» Frequency Range: 2GHz to 20 GHz ( A<<L.)

Port 2

Paddle-Wheel Mode-Stirrer

Microwave
absorber

Port Radiation Measurement Setup
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Effect of Direct Ray Paths

Original Random Coupling Model (RCM)
- RF energy is randomized on entering cavity
- Only radiation impedance of ports, cavity volume and average Q are important

In some geometries, or in narrow frequency bands specifics of internal geometry are
important

Modified Random Coupling Model
- J. Hart et al., PHYSICAL REVIEW E 80, 041109 (2009)
- Allows for systematic improvement by inclusion of geometric details if known
- Can be used in conjunction with measured data

Using the Random Coupling Model, extended to include the effect of
direct paths, we can now derive these two fading distributions.



Effect of Short Ray Paths
Hart et al. PRE 80, 041109 (2009).

Port
Z =] (XR.N"‘RR,N@
f \ Where:
/' 2% .
s / Zpy = Rpy +JXpy
1 Bounce V4 Radiation impedance including the
2 Bounce effect of N-bounces off the wall
) calculated in the semi-classical
ere- approximation

Semi-classical Green’s function in 2D

G(r,r’)= %{Hé”(ﬂr — r’|)+ Z i[

o°L ()
or or/

2
n

] exp[iij(r,r’) +in(n—1/ 4)]

paths—j



- Modified RCM
4 TS J. Hart et al., PHYSICAL REVIEW E 80, 041109 (2009)

TRy LN

1/2 [Rmd]l/Z

Original RCM: g cav _ jIm( émd ) i [ §rad]

[

Modified RCM: écav _ jIm(éave>_|_[§ave]l/2 '§'[§ave]l/2

Here Z2*¢ is the cavity impedance averaged over a prescribed frequency band
- can be measured
- can be calculated if enough geometry is known

Calculated in geometric optics limit: Z** = j Im( A ) + [ R ]” 2 s [ §rad]l/ 2

(] = 2 Do Comn ©XPI=S,. () — jr /4]

ray paths—b
m—n

Py mp-attenuation, C, - -ray defocusing, S ray phase change=kL,



Numerical Tests (HFSS) on Bow Tie Cavity

95 realizations generated by
moving a circular perturber

Port 1 Perturber

Locations

used)

(not always

Median Reactance (Q)

Average (over realizations)
impedance seen at port #1

1000 -
800-
600-
400-

50 55 60 65 7.0
Frequency (GHz)



Multiple Bounces in the Bow Tie




Theory includes
contributions
from N=2,4,6
bounces.

Frequency (GHz)




Measurement of Effect of Short Orbits
Yeh et al. PRE 82, 041114 (2010).
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Single Realization

Resistance ()
Reactance (QQ)

Frequency (GHz)

Measurement of Z11

— Measured Data
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Configuration Averaging
100 Realizations
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Question: What are the
characteristics of the time
decaying pulse emerging
from the cavity?

Incident Pulse

Complex Reflected Pulse

cavity “Coda”

- Time Decay of Cavity Radiation

Incident Yoltage vs. Time
T T

Reflected Pulse )

o 02 04 06 08 1
Tirme (5] % 10-8



@ Long-Time Properties of Reflected Pulse
1A Hart et al. PRE 79, 016208 (2009)

- Py
TRYIAS

, _ Ensemble average
Output signal is a

superposition of modes

Vt)y= YV, exp| j(@,+7,)t]

107 \

The following quantities
have random distributions,
determined by Random
Matrix Theory (RMT)

Refected Power

: Single realization

107 107
Time (s)

Time average of single realization

Vn 2 a)n 2 yn



General Results for Reflected Power
J. Hart et al. PRE to be published

Ensemble average decays with power law (already known)

Time average of an individual realization follows
ensemble average for some time, and then decays
exponentially

Individual realizations oscillate about their time average.
Transition from algebraic to exponential decay obeys

universal distribution (parameters: pulse bandwidth, cavity
mode spacing, port coupling strength)
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e 0 Universal Transition for Gaussian Pulses
J. Hart et al. PRE (2009)
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Ensemble Average Theory for two different pulse widths

P(t)~t"7

C(a,7t) = fraction of
realizations with

P(¢) < aP(¢)

Normalized time
Ao’
2

w B

T

A® -mode spacing
@, -pulse bandwidth P -depends on port coupling
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C(o,T) = fraction of
realizations with

P(t) < otP(t)
tAw’
T= 5
oMy

,?@ Numerical verification via simulation

50 realizations of time domain equations
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“ Sensing small changes in a wave chaotic scattering system
B. Taddese, J. Ap. Phys. 108, 114911 (2010)
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Recent Developments

First Principles derivation of fading

distributions

Left well

Coupling of cavities

Statistics of fields in chains of coupled

cavities

Statistics of fields in mixed systems —

Coupling by apertures
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Conclusions

Frequency Domain:

Universal (RMT) and system specific contributions to
statistics of wave scattering.

Effects of losses, antennas, direst ray paths can be
included.

Time Domain:

Decay of wave energy exhibits universal behavior
Time reversal symmetry can be used sensitivly determine
changes in an environment



