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Motivation: Electromagnetic Coupling to
Electronic Circuits in Enclosures

connectors

cables

circuit boards

Integrated circuits

Schematic
• Coupling of external radiation to
computer circuits is a complex
processes:

apertures
resonant cavities
transmission lines
circuit elements

• Intermediate frequency range
involves many interacting resonances

• System size >>Wavelength

• Chaotic Ray Trajectories
• “Wave Chaos”

•  What can be said about coupling without
solving in detail the complicated EM
problem ?
• Statistical Description !



What is Wave Chaos?

• Wave propagation- linear phenomena
(response is linearly proportional to
excitation)

• Therefore - not chaotic

• In complex geometries field
distribution are highly sensitive to:
frequency and/or small perturbations

• Classical rays are chaotic-this affects
the field solutions

Two incident rays with slightly
different initial directions have
rapidly diverging trajectories



Random Matrix Theory and Wave
Mechanics

•  Nuclear Spectra
Motivated by the then impossibility of calculating spectra of large nuclei,
Wigner (1950’s) conjectured that these spectra have statistical properties
that are the same as those of suitable ensembles of random matrices.

•   Quantum Dots & Disordered Systems
Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000).
C.W.J. Beenakker, Rev. Mod. Phys. 69, 731, (1997)
•   Acoustic Resonators
R.L. Weaver, J. Acoust. Soc. Am. 85, 1005 (1989)
•   Electromagnetic Compatibility
L.K. Warne, K.S. H. Lee, H.G. Hudson, W. A. Johnson, R. E. Jorgenson, and S.L.

Stronach, IEEE Trans. Ant. Prop. 51, 978 (2003).

•   Quantum Chaos
F. Haake, Quantum Signatures of Chaos (Springer-Verlag, Berlin 1991).
H.-J. Stöckmann, Quantum Chaos (Cambridge University Press, Cambridge 1999)



Eigenfrequency Statistics

Normalized Spacing:

Eigenvalues En
  are distributed particular
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RMT and Eigenfunction Statistics

Hypothesis:  Random matrix theory (RMT) applies to wave problems in the semiclassical
regime (short wavelength), if the ray approximation corresponding to the given wave problem
yields chaotic wave trajectories [McDonald and Kaufman, PRL (1979); Bohigas, et al., PRL
(1984)].

Note:  Hypothesis now assumed to
apply even for simple systems.
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Replace eigenfunction with superposition of random
plane waves (Berry Hypothesis)



Our Problem - Scattering

Port 2

Port 1

Port 3

Wave
Chaotic
System

Q:  What is the nature of the interaction
of the wave chaotic system with the
outside world via the connecting ports?

A difficulty:  While the waves within the chaotic
system are presumably described by random matrix
theory in a ‘universal’ (system independent) manner,
the answer to Q. also depends on the non-universal
aspects of the specific geometry of the coupling
between the ports and the chaotic system.



Universal and System Specific Aspects

Port 2

Port 1

Port 3

Wave
Chaotic
System

1. Entry of energy  to cavity
determined by properties of port.
- System specific
- Applies also to exit

2. Wave fields inside described by
RMT and Berry Hypothesis
- Universal statistics
- Some system specific
dependence

Note, interference is still accounted
for.



Black Box Representation
N - Port System

connectors

cables

circuit boards

Integrated circuits

Schematic

N- Port
System

•
•
•

Incoming
RF Power

Device Terminal



Z and S-Matrices
What is Sij ?
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S = (Z + Z0 )
−1(Z − Z0)

• Complicated function of
frequency
• Details depend sensitively on
unknown parameters

Z(ω) , S(ω)

N- Port
System

•
•
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N ports
• voltages and currents,
• incoming and outgoing
waves
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Frequency Dependence of Reactance
for a Single Realization

Lossless:

V=Zcav I
Zcav=jXcav

Zcav

� 

S =
Zcav − Z0
Zcav + Z0

= e jφ

S  - reflection
       coefficient

Mean spacing δf ≈ .016 GHz
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Statistical Model of Z Matrix

Port 1

Port 2

Other ports

Losses

Port 1

Free-space radiation
Resistance   RR(ω)
ZR(ω) = RR(ω)+jXR (ω)

RR1(ω)

RR2(ω)

Statistical Model Impedance

Q -quality factor

Δω2
n  -  mean spectral spacing

Radiation Resistance   RRi(ω)

win- Guassian Random variables

ωn  -  random spectrum

System
parameters

Statistical
parameters

Zij (ω ) = −
j
π

RRi
1/2 (ωn )

n
∑ RRj

1/2 (ωn )
Δωn

2 winwin

ω 2 (1+ jQ−1) −ωn
2



Compact Expression for Impedance Matrix

  
Zcav = i Im Zrad( )+ Rrad⎡
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Statistics generated by RMT

Statistical Model for Cavity Impedance 

Radiation Impedance - Ports

 
Zrad = i Im Zrad( )+ Rrad

GRVs

Eigenvalues of a RM
Lorentzian Random Matrix ( α=ko

2/(QΔk2))



Two Approaches

P. A. Mello et al., Ann. Phys. 161, 254 (1985).
P. W. Brouwer, Phys. Rev. B 51 (1995).
E. Kogan et al., Phys. Rev. E 61 (2000).
R. A. Mendez-Sanchez et al., Phys. Rev. Lett. 91, (2003).
L. K. Warne et al., IEEE Trans. Antennas & Prop. 51, 978 (2003).

•  Z(ω) construction - Microscopic approach
  Uses pieces of problem: RR, Δ ω 2, Q  to construct  Z  and S.

•  Poisson Kernel - Global Approach to S
(P. A. Mello, P. Pereyra, and A. Frankel, Ann of Phys. 161, 251 (1985))
  Statistics of S - Matrix determined by its average E{S}
    -  P(S| E{S})  includes details of coupling

•  Equivalence: Brouwer, Phys. Rev B51, 16878 (1995)

Some Relevant References



HFSS - Solutions
Bow-Tie Cavity

Moveable conducting
disk - .6 cm diameter
“Proverbial soda can”

Cavity impedance
calculated for
100 locations of disk
4000 frequencies
6.75 GHz  to 8.75 GHz

Curved walls guarantee all
ray trajectories are
chaotic

Expect:      Z  =   j(XR+RRξ)
ξ  - unit Lorentzian
Krieger, Ann. Phys. 42, 375 (1967)
Mello, “Mesoscopic Quantum Physics” 1995
Fyodorov and Sommers, J. Math Phys. 38, 1918
(1997)



Frequency Dependence of Reactance
for a Single Realization

Ω

Mean spacing δf ≈ .016 GHz

Zcav=jXcav



Distribution of Fluctuating Cavity Impedance

� 

ξ = (X − X R(ω)) / RR (ω)

6.75-7.25 GHz

7.25-7.75 GHz

7.75-8.25 GHz

8.25-8.75 GHz
RR ≈ 35 Ω 

6.75-8.75 GHz

Z  =   j(XR+RRξ)



Frequency Dependence of Median Cavity
Reactance

Effect of strong 
Reflections ?

Radiation Reactance
HFSS with perfectly absorbing
Boundary conditions

Median Impedance for
 100 locations of disc

Δf = .3 GHz, L= 100 cm

Ω



Comparison of HFSS Results and Model
for Pdf’s of Normalized Impedance

Normalized Reactance Normalized Resistance

ξ

Zcav = jXR+(ρ+jξ) RR

ρ

Theory

      Theory



EXPERIMENTAL TestEXPERIMENTAL Test

S. Hemmady et al., PRL 94, 014102 (2005)

Eigenmode Image at
12.57GHz

8.5”

17” 21.4”

0.310”
DEEP

Antenna Entry Point

SCANNED
PERTURBATION

Circular
Arc

R=25R=25””

Circular
Arc

R=42R=42””

• 2 Dimensional Quarter Bow Tie cavity
• 1-port S and Z measurements in the 6 – 12 GHz range.
• Ensemble average through 100 locations of the perturbation

0. 31”

1.05”

1.6”

Perturbation



Importance of Normalization

(2a)
BottomPlate

Top plate
Diameter

2a=0.635mm
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Testing the Effects of Varying Loss

High LossLow Loss Intermediate Loss
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Validation of the Model 3D - S. Hemmady

Port 2

Paddle-Wheel Mode-Stirrer

Experimental Setup [Cavity Case]

Port 1

• Frequency Range: 2GHz to 20 GHz ( λ<<L )

• Ensemble Averaging over ~20 positions of the mode-stirrer.

Port Radiation Measurement Setup

Microwave
absorber

Port 2Port 2



PDF of voltages on port 2 for different power-
spectral densities radiated at Port 1
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Unexpected Frequency Dependence of Median Cavity
Reactance

Effect of
Reflections ?

Expected: Radiation Reactance
HFSS with perfectly absorbing
Boundary conditions

Calculated:  Median
Reactance for100
locations of disc

Δf = .3 GHz, L= 100 cm

Ω

Δfres = .016 GHz
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Effect of Direct Ray Paths

Original Random Coupling Model (RCM)
    -  RF energy is randomized on entering cavity
    -  Only radiation impedance of ports, cavity volume and average Q are important

In some geometries, or in narrow frequency bands specifics of internal geometry are
important

Modified Random Coupling Model
     -   J. Hart et al., PHYSICAL REVIEW E 80, 041109 (2009)
     -   Allows for systematic improvement by inclusion of geometric details if known
     -   Can be used in conjunction with measured data

Using the Random Coupling Model, extended to include the effect of
direct paths,  we can now derive these two fading distributions.



Effect of Short Ray Paths
Hart et al. PRE 80, 041109 (2009).

Port

1 Bounce
2 Bounce

Z  =   j(XR.N+RR,Nξ)
Where:

ZR,N  =  RR,N + j XR,N

Radiation impedance including the
effect of N-bounces off the wall
calculated in the semi-classical
approximationetc.

G(r, ′r ) = 1
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2
π

∂2Lj (r, ′r )
∂r⊥∂ ′r⊥

⎛

⎝
⎜

⎞

⎠
⎟

paths− j
∑

1/2

exp ikLj (r, ′r ) + iπ (n −1 / 4)⎡⎣ ⎤⎦
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Semi-classical Green’s function in 2D



Modified RCM
 J. Hart et al., PHYSICAL REVIEW E 80, 041109 (2009)

  
Zcav = j Im Zrad( )+ Rrad⎡

⎣⎢
⎤
⎦⎥
1/2
⋅ ξ ⋅ Rrad⎡
⎣⎢
⎤
⎦⎥
1/2

Original RCM:

Here Zave is the cavity impedance averaged over a prescribed frequency band
- can be measured
- can be calculated if enough geometry is known

  
Zcav = j Im Zave( )+ Rave⎡

⎣⎢
⎤
⎦⎥
1/2
⋅ ξ ⋅ Rave⎡
⎣⎢
⎤
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1/2Modified RCM:

Calculated in geometric optics limit:
  
Zave = j Im Zrad( )+ Rrad⎡

⎣⎢
⎤
⎦⎥
1/2
⋅ ς ⋅ Rrad⎡
⎣⎢
⎤
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ς( )
mn

= pb,mn Cb,mn exp[− j
ray paths−b
m→n

∑ Sb,mn (ω)− jπ / 4]

pb,mn-attenuation,   C b,mn - ray defocusing,  S b,mn  ray phase change=kLb,mn



Numerical Tests (HFSS) on Bow Tie Cavity

95 realizations generated by
moving a circular perturber

Average (over realizations)
impedance seen at port #1



Multiple Bounces in the Bow Tie



Prediction of Average Resistance

Theory includes
contributions
from N= 2, 4, 6
bounces.



Measurement of Effect of Short Orbits
Yeh et al. PRE 82, 041114 (2010).

 
zcorrection =

Z−ZRad

RRad



Measurement of Z11

Single Realization Measured Data
Theory, 584 trajectories
Radiation Impedance



Frequency Smooth Data
Window = 240 MHz

Single Realization



Configuration Averaging
100 Realizations

Contributions to theory
from trajectories blocked
by perturber are
dropped.



Time Decay of Cavity Radiation

Incident Pulse

Reflected Pulse
“Coda”

Question: What are the
characteristics of the time
decaying pulse emerging
from the cavity?

Complex
cavity



Long-Time Properties of Reflected Pulse
Hart et al. PRE 79, 016208 (2009)

  
V (t) = Vn exp

n
∑ j(ω n + γ n )t⎡⎣ ⎤⎦

Output signal is a
superposition of modes

  Vn , ω n , γ n

The following quantities
have random distributions,
determined by Random
Matrix Theory (RMT)

Single realization

Time average of single realization

Ensemble average



General Results for Reflected Power
J. Hart et al. PRE to be published

1. Ensemble average decays with power law (already known)

2. Time average of an individual realization follows
ensemble average for some time, and then decays
exponentially

3. Individual realizations oscillate about their time average.

4. Transition from algebraic to exponential decay obeys
universal distribution (parameters: pulse bandwidth, cavity
mode spacing, port coupling strength)



Universal Transition for Gaussian Pulses
 J. Hart et al. PRE (2009)

C(α,τ) = fraction of
realizations with

  P(t) <αP(t)

Ensemble Average

   P(t) ∼ t−5/ 2

Normalized time

  
τ =

tΔω 3

ω B
2 P0

Δω -mode spacing

 ω B -pulse bandwidth

Δω

  P0 -depends on port coupling

Theory for two different pulse widths



Numerical verification via simulation

50 realizations of time domain equations

C(α,τ) = fraction of
realizations with

  P(t) <αP(t)

  
τ =

tΔω 3

ω B
2 P0



Sensing small changes in a wave chaotic scattering system
B. Taddese,  J. Ap. Phys. 108, 114911 (2010)

Initial Broadcast

Collected Sona

Reconstructed signals



Recent Developments

1. First Principles derivation of fading
distributions

2. Coupling of cavities

3. Statistics of fields in chains of coupled
cavities

4. Statistics of fields in mixed systems

5. Coupling by apertures
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Conclusions

Frequency Domain:

Universal (RMT) and system specific contributions to
statistics of wave scattering.

Effects of losses, antennas, direst ray paths can be
included.

Time Domain:

Decay of wave energy exhibits universal behavior
Time reversal symmetry can be used sensitivly determine

changes in an environment


